
Package: tagtools (via r-universe)
September 13, 2024

Title Work with Data from High-Resolution Biologging Tags

Version 0.2.0

Description High-resolution movement-sensor tags typically include
accelerometers to measure body posture and sudden movements or
changes in speed, magnetometers to measure direction of travel,
and pressure sensors to measure dive depth in aquatic or marine
animals. The sensors in these tags usually sample many times
per second. Some tags include sensors for speed, turning rate
(gyroscopes), and sound. This package provides software tools
to facilitate calibration, processing, and analysis of such
data. Tools are provided for: data import/export; calibration
(from raw data to calibrated data in scientific units);
visualization (for example, multi-panel time-series plots);
data processing (such as event detection, calculation of
derived metrics like jerk and dynamic acceleration, dive
detection, and dive parameter calculation); and statistical
analysis (for example, track reconstruction, a rotation test,
and Mahalanobis distance analysis).

Depends R (>= 3.4)

Imports CircStats, cowplot, dplyr, ggplot2, graphics, latex2exp,
lubridate, matlab, ncdf4, plotly, pracma, readr, signal, stats,
stringr, utils, zoo, zoom

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

URL <https://animaltags.org>,
<https://animaltags.github.io/tagtools_r/index.html>

BugReports https://github.com/animaltags/tagtools_r/issues

Config/Needs/website rmarkdown

Config/testthat/edition 3

1

https://animaltags.org>
https://animaltags.github.io/tagtools_r/index.html>
https://github.com/animaltags/tagtools_r/issues

2 Contents

Repository https://animaltags.r-universe.dev

RemoteUrl https://github.com/animaltags/tagtools_r

RemoteRef HEAD

RemoteSha 4c1a76080307196366b82bfcd9dadd7749fde16b

Contents
a2pr . 4
absorption . 5
acc_wgs84 . 6
add_nc . 6
apply_cal . 7
beaked_whale . 8
block_acf . 8
block_mean . 9
block_rms . 10
body_axes . 11
buffer . 12
check_AM . 13
cline . 14
col_line3 . 15
comp_filt . 16
crop . 17
crop_all . 18
crop_to . 18
csv2struct . 19
decdc . 20
decz . 21
depth2pressure . 22
depth_rate . 23
detect_peaks . 24
dive_stats . 25
draw_axis . 27
dsf . 28
euler2rotmat . 29
extract . 30
extract_cues . 30
find_dives . 31
fir_nodelay . 32
fit_tracks . 33
fix_offset_3d . 34
fix_pressure . 35
get_researcher . 36
get_species . 36
harbor_seal . 37
hilbert_env . 37
hilbert_transform . 38

Contents 3

htrack . 39
image_irreg . 40
inclination . 41
interp2length . 42
interp_nan . 43
inv_axis . 43
julian_day . 44
lalo2llf . 45
load_nc . 46
m2h . 47
make_info . 48
make_specgram . 49
mean_absorption . 50
median_filter . 51
merge_fields . 52
metadata_editor . 52
msa . 53
m_dist . 54
njerk . 55
norm2 . 56
ocdr . 57
odba . 58
plott . 59
plott_base . 61
plott_static_panel . 63
prh_predictor1 . 64
prh_predictor2 . 65
ptrack . 66
read_cats . 68
read_cats_csv . 69
rotate_data . 70
rotate_vecs . 71
rotation_test . 71
rotmat2euler . 73
rough_cal_3d . 74
save_nc . 75
sens_struct . 76
smooth . 77
sound_speed . 78
spectrum_level . 79
speed_from_depth . 80
spherical_cal . 81
tag2animal . 82
tortuosity . 84
track3D . 85
undo_cal . 87
zero_crossings . 88

Index 90

4 a2pr

a2pr Pitch and roll from acceleration

Description

Pitch and roll estimation from triaxial accelerometer data. This is a non-iterative estimator with
|pitch| constrained to <= 90 degrees. The pitch and roll estimates give the least-square-norm error
between A and the A-vector that would be measured at the estimated pitch and roll. If A is in the
animal frame, the resulting pitch and roll define the orientation of the animal with respect to its
navigation frame. If A is in the tag frame, the pitch and roll will define the tag orientation with
respect to its navigation frame.

Usage

a2pr(A, sampling_rate = NULL, fc = NULL)

Arguments

A An nx3 acceleration matrix with columns [ax ay az] or acceleration sensor list
(e.g., from readtag.R). Acceleration can be in any consistent unit, e.g., g or
m/s^2.

sampling_rate (optional) The sampling rate of the sensor data in Hz (samples per second). This
is only needed if filtering is required. If A is a sensor data list, sampling_rate is
obtained from its metadata (A$sampling_rate).

fc (optional) The cut-off frequency of a low-pass filter to apply to A before com-
puting pitch and roll. The filter cut-off frequency is in Hertz. The filter length
is 4*sampling_rate/fc. Filtering adds no group delay. If fc is not specified, no
filtering is performed.

Value

A list with 2 elements:

• p: The pitch estimate in radians

• r: The roll estimate in radians

Note

Output sampling rate is the same as the input sampling rate.

Frame: This function assumes a [north,east,up] navigation frame and a [forward,right,up] local
frame. In these frames, a positive pitch angle is an anti-clockwise rotation around the y-axis. A
positive roll angle is a clockwise rotation around the x-axis. A descending animal will have a
negative pitch angle while an animal rolled with its right side up will have a positive roll angle.

See Also

m2h

absorption 5

Examples

samplematrix <- matrix(c(0.77, -0.6, -0.22, 0.45, -0.32, 0.99, 0.2, -0.56, 0.5),
byrow = TRUE, nrow = 3

)
list <- a2pr(samplematrix)

absorption Calculates the absorption coefficient for sound in seawater

Description

Calculates the absorption coefficient for sound in seawater

Usage

absorption(freq, temperature, d)

Arguments

freq frequency in Hz

temperature temperature in degrees C

d depth in meters

Value

The sound absorption in dB per metre.

Note

Input arguments can be scalars, or a mixture of vectors and scalars as long as each argument is
either a vector of length nx1 (with n being the same for all vector arguments) or a scalar.

After Kinsler and Frey pp. 159-160

Examples

absorption(140e3, 13, 10)

6 add_nc

acc_wgs84 Calculate total acceleration

Description

This function calculates the total acceleration due to gravitation and centripetal force at the earth’s
surface according to the WGS84 international gravity formula.

Usage

acc_wgs84(latitude)

Arguments

latitude The latitude in degrees.

Value

g given in units of m/s^2

Note

Source: http://solid_earth.ou.edu/notes/potential/igf.htm

Examples

acc_wgs84(50)

add_nc Save an item to a NetCDF or add one tag sensor or metadata variable
to a NetCDF archive file.

Description

Add one tag sensor or metadata variable to a NetCDF archive file. If the archive file does not exist,
it is created. The file is assumed to be in the current working directory unless a pathname is added
to the beginning of fname.

Usage

add_nc(file, D, vname)

apply_cal 7

Arguments

file The name of the netCDF file to which to save. If the name does not include a
.nc suffix, this will be added automatically.

D The sensor data or metadata list to be saved.

vname The name of the sensor data stream to be saved. Defaults to the entry "name"
from the sensor or metadata list provided by the user (but an option to specify a
name is provided to facilitate calling this function from save_nc).

Value

no return; adds a structure to an animaltag object

See Also

save_nc, load_nc

Examples

BW <- beaked_whale
add_nc("beaked_whale", njerk(BW$A), "Jerk")

apply_cal Implement a calibration on tag sensor data

Description

Given an appropriate set of calibration constants and information, this function will apply the cal-
ibration procedure to a tag sensor data set. Cal fields currently supported are: poly, cross, map,
tcomp, tref

Usage

apply_cal(X, cal, Tempr = NULL)

Arguments

X A tag sensor data list, or a matrix or vector containing tag sensor data

cal A calibration list for the data in X from, for example, spherical_cal.

Tempr a tag sensor data list or a vector of temperature measurements for use in temper-
ature compensation. If Tempr is not a sensor data list, it must be the same size
and sampling rate as the data in X. Tempr is only required if there is a tcomp
item in the cal list.

8 block_acf

Value

A tag sensor data structure (or a matrix or vector, if X was a matrix or vector) with the calibration
implemented. Data size and sampling rate are the same as for the input data X, but units may have
changed.

Examples

A_cal <- apply_cal(harbor_seal$A,spherical_cal(harbor_sealAdata))

beaked_whale Set of sensor lists for a beaked_whale

Description

Data is from a _Mesoplodon densirostris_ with tag ID md13_134a. The device used was a DTAG3
and it was deployed at 2013-05-14 12:42:00 in El Hierro, Canary Islands, Spain.

Usage

beaked_whale

Format

A set of sensor lists:

A sensor list containing a triaxial acceleration matrix sampled at 25 Hz

M sensor list containing a triaxial magnetometer matrix sampled at 25 Hz

P sensor list containing a pressure (depth) vector sampled at 25 Hz

block_acf Compute autocorrelation function

Description

This function allows calculation of an autocorrelation function (ACF) for a dataset with multiple
independent units (for example, data from several individuals, data from multiple dives by an indi-
vidual animal, etc.). The groups (individual, dive, etc.) should be coded in a categorical variable.
The function calculates correlation coefficients over all levels of the categorical variable, but re-
specting divisions between levels (for example, individual animals are kept separate).

Usage

block_acf(resids, blocks, max_lag, make_plot = TRUE, ...)

block_mean 9

Arguments

resids The variable for which the ACF is to be computed (often a vector of residuals
from a fitted model)

blocks A categorical variable indicating the groupings (must be the same length as
resids. ACF will be computed only for data points within the same block.)

max_lag ACF will be computed at 0-max_lag lags, ignoring all observations that span
blocks. Defaults to the minimum number of observations in any block. The
function will allow you to specify a max_lag longer than the shortest block if
you so choose.

make_plot Logical. Should a plot be produced? Defaults to TRUE.

... Additional arguments to be passed to plot.acf

Value

A data frame with 1 variable containing the values of ACF.

Examples

block_acf(
resids = ChickWeight$weight,
blocks = ChickWeight$Chick

)

block_mean Compute mean of sample blocks

Description

This function is used to compute the means of successive blocks of samples.

Usage

block_mean(X, n, nov)

Arguments

X A vector or a matrix containing samples of a signal in each column.

n The number of samples from X to use in each analysis block.

nov (optional) The number of samples that the next block overlaps the previous
block. The default value is 0.

10 block_rms

Value

A list with 2 elements:

• Y: A vector or matrix containing the mean value of each block. If X is a mxn matrix, Y is
pxn where p is the number of complete n-length blocks with nov that can be made out of m
samples, i.e., n+(p-1)*(n-nov) < m

• samples: The time at which each output in Y is reported, in units of samples of X. So if
samples[1] = 12, then the value Y[1] corresponds to the “time” 12 samples in X.

Examples

samplematrix <- matrix(c(1, 3, 5, 7, 9, 11, 13, 15, 17), byrow = TRUE, ncol = 3)
list <- block_mean(samplematrix, n = 3, nov = 1)

block_rms Compute RMS of sample blocks

Description

This function is used to compute the RMS (root-mean-square) of successive blocks of samples.

Usage

block_rms(X, n, nov = NULL)

Arguments

X A vector or a matrix containing samples of a signal in each column.
n The number of samples from X to use in each analysis block.
nov The number of samples that the next block overlaps the previous block.

Value

A list with 2 elements:

• Y: A vector or matrix containing the RMS value of each block. If X is a mxn matrix, Y is
pxn where p is the number of complete n-length blocks with nov that can be made out of m
samples, i.e., n+(p-1)*(n-nov) < m

• samples: The time at which each output in Y is reported, in units of samples of X. So if
samples[1] = 12, then the value Y[1] corresponds to the “time” 12 samples in X. The times at
which Y values are reported are the centers of the averaging windows.

Note

Output sampling rate is the same as the input sampling rate so s and v have the same size as p.

Frame: This function assumes a [north,east,up] navigation frame and a [forward,right,up] local
frame. In these frames, a positive pitch angle is an anti-clockwise rotation around the y-axis. A
descending animal will have a negative pitch angle.

body_axes 11

Examples

X <- matrix(c(1:20), byrow = TRUE, nrow = 4)
block_rms(X, n = 2, nov = NULL)

body_axes Generate the cardinal axes of an animal

Description

This function is used to generate the cardinal axes of an animal (i.e., the longitudinal, transverse,
and ventro-dorsal) from accelerometer and magnetic field measurements. This functions generates
an approximate orthonormal basis from each measurement of A and M by: (i) normalizing A and
M to unit length, (ii) rotating the magnetometer measurement to the horizontal plane (Mh), (iii)
computing the cross-product, N, of A and Mh to generate the third axis, (iv) transposing [Mh,N,A]
to form the body axis basis.

Usage

body_axes(A, M, sampling_rate = NULL, fc = NULL)

Arguments

A The acceleration matrix with columns [ax ay az], or a sensor data list. Acceler-
ation can be in any consistent unit, e.g., g or m/s^2.

M The magnetometer signal matrix, M=[mx,my,mz], or a sensor data list, in any
consistent unit (e.g., in uT or Gauss).

sampling_rate sampling rate of A and M in Hz (optional if A and M are sensor data lists)

fc (optional) The cut-off frequency of a low-pass filter to apply to A and M before
computing the axes. The filter cut-off frequency is in Hz. The filter length is
4*fs/fc. Filtering adds no group delay. If fc is not specified, no filtering is
performed.

Value

W, a list with entries x, y, and z; each is an nx3 matrix of body axes where n is the number of rows
in M and A. W$x is a nx3 matrix (or a length-3 vector if A and M have one row) containing the X
or longitudinal (caudo-rostral) axes. W$y is a nx3 matrix (or a length-3 vector if A and M have one
row) containing the Y or transverse (left-right) axes. W$z is a nx3 matrix (or a length-3 vector if
A and M have one row) containing the Z or ventro-dorsal axes. W$sampling_rate has the sampling
rate of the A and M.

12 buffer

Note

Output sampling rate is the same as the input sampling rate. Irregularly sampled data can be used,
but then filtering must not be applied (fc = NULL).

Frame: This function assumes a [north,east,up] navigation frame and a [forward,right,up] local
frame. This function will only return the animal’s cardinal axes if the tag was attached so that the
sensor axes aligned with the animal’s axes OR if the tag A and M measurements are rotated to
account for the orientation of the tag on the animal. Otherwise, the axes returned by this function
will be the cardinal axes of the tag, not the animal.

Examples

samplematrix1 <- matrix(c(7, 2, 3, 6, 4, 9), byrow = TRUE, ncol = 3)
samplematrix2 <- matrix(c(6, 5, 3, 4, 8, 9), byrow = TRUE, ncol = 3)
W <- body_axes(A = samplematrix1, M = samplematrix2, fc = NULL)

buffer Buffers a signal vector into matrix

Description

This function is used to buffer a signal vector into a matrix of data frames. If the input for nodelay
is TRUE, the the signal is buffered with no delay. If nodelay is FALSE, and specifies a vector of
samples to precede x[1] in an overlapping buffer.

Usage

buffer(x, n, overlap, opt, nodelay = FALSE)

Arguments

x The signal vector to be buffered

n The desired length of data segments (rows).

overlap The desired amount of overlap between consecutive frames (columns) in the
output matrix

opt The vector of samples specified to precede x[1] in an overlapping buffer

nodelay A logical statement to determine if the vector should be buffered with or without
delay. Default is FALSE (with delay)

Value

A list with 3 elements is returned if nodelay = FALSE:

• X: A matrix of the buffered signal vector "vec" with "n" data segments and an overlap between
consecutive frames specified by "p". The matrix starts with "opt" values if nodelay is FALSE.

• z: The remainder of the vector which was not included in the matrix if the last column did
not have a full number of rows.

check_AM 13

• opt: The last values, length of "p", of the matrix "X".

If nodelay = TRUE, then a matrix of the buffered signal vector "vec" with "n" data segments and an
overlap between consecutive frames specified by "overlap". The matrix starts with "opt" values if
nodelay is FALSE.

Examples

x <- c(1:10)
n <- 3
overlap <- 2
opt <- c(2, 1)
list1 <- buffer(x, n, overlap, opt)
list2 <- buffer(x, n, overlap, nodelay = TRUE)

check_AM Compute field intensity of tag acceleration and magnetometer data.

Description

Compute field intensity of acceleration and magnetometer data, and the inclination angle of the
magnetic field. This is useful for checking the quality of a calibration, for detecting drift, and for
validating the mapping of the sensor axes to the tag axes.

Usage

check_AM(A, M = NULL, fs = NULL, find_incl = TRUE)

Arguments

A An accelerometer sensor structure or matrix with columns [ax ay az]. Accelera-
tion can be in any consistent unit, e.g., g or m/s^2.

M A magnetometer sensor structure or matrix, M=[mx,my,mz] in any consistent
unit (e.g., in uT or Gauss).

fs (optional) The sampling rate of the sensor data in Hz (samples per second). This
is only needed if A and M are not sensor structures and filtering is required.

find_incl (optional; logical) Should inclination be computed and returned? Default is
TRUE.

Details

The sampling rate of fstr and incl is the same as the input sampling rate. This function automatically
low-pass filters the data with a cut-off frequency of 5 Hz if the sampling rate is greater than 10 Hz.
Frame: This function assumes a [north,east,up] navigation frame and a [forward,right,up] local
frame.

14 cline

Value

If find_incl is false, then the matrix fstr is returned. Otherwise, check_AM returns a list with
elements:

• fstr, The estimated field intensity of A and or M in the same units as A and M. fstr is a
vector or a two column matrix. If only one type of data is input, fstr will be a column vector.
If both A and M are input, fstr will have two columns with the field strength of A in the 1st
column and the field strength of M in the 2nd column.

• incl, The estimated field inclination angle (i.e., the angle with respect to the horizontal
plane) in radians. incl is a column vector. By convention, a field vector pointing below the
horizon has a positive inclination angle. This is only returned if the function is called with
both A and M data.

Examples

AMcheck <- check_AM(
A = matrix(c(-0.3, 0.52, 0.8), nrow = 1),
M = matrix(c(22, -22, 14), nrow = 1),
fs = 1

)

cline Add colored line segments to a plot

Description

This function adds colored line segments to an existing plot. The line is plotted at points specified
by inputs x and y, and colored according to factor input z (with one color for each level of z).

Usage

cline(x, y, z, color_vector)

Arguments

x x positions of points to be plotted

y y positions of points to be plotted

z a factor, the same length as x and y. Line segments in the resulting plot will be
colored according to the levels of z.

color_vector a list of colors to use (length should match the number of levels in z).

Value

adds colored lines to a graph

col_line3 15

Examples

cline(x=ChickWeight$Time, y=ChickWeight$weight,
z=as.factor(ChickWeight$Diet),
color_vector=c('black', 'grey20',

'grey50', 'grey70'))

col_line3 Plot coloured line(s) in 3 dimensions with plot_ly

Description

This function is used to plot three dimensional lines with segments colored. It may be just as simple
to use plotly::plot_ly() directly.

Usage

col_line3(x, y, z = 0, c, ...)

Arguments

x name of object or variable containing data for x axis

y name of object or variable containing data for y axis

z name of object or variable containing data for z axis

c name of object or variable by which to color

... Additional inputs for plot_ly()

Value

a plot_ly() graphics object

Note

x, y, z and c must all be the same size vectors. The color axis will by default span the range of
values in c, i.e., caxis will be c(min(min(c)), max(max(c))).

See Also

cline

Examples

col_line3(1:20, 1:20, 1:20, 1:20)

16 comp_filt

comp_filt Complementary filtering of a signal.

Description

This function breaks signal X into two or more frequency bands such that the sum of the signals in
the separate bands is equal to the original signal.

Usage

comp_filt(X, sampling_rate = NULL, fc)

Arguments

X A sensor vector or matrix (i.e., with a signal in each column) or sensor list (e.g.,
from readtag.R).

sampling_rate The sampling rate of the sensor data in Hz (samples per second).

fc Specifies the cut-off frequency or frequencies of the complementary filters. Fre-
quencies are in Hz. If one frequency is given, X will be split into a low- and a
high-frequency component. If fc contains more than one value, X will be split
into multiple complementary bands. Each filter length is 4*sampling_rate/fc.
Filtering adds no group delay.

Details

Possible input combinations: comp_filt(X,sampling_rate,fc) if X is a vector or matrix, comp_filt(X,fc
= fc) if X is a list

Value

A list of filtered signals. There are n+1 sections of the list where n is the length of fc. List sections
are ordered in Xf from lowest to highest frequency. Each list section contains a vector or matrix of
the same size as X, and at the same sampling rate as X.

Examples

Xf <- comp_filt(X = beaked_whaleAdata, sampling_rate = beaked_whaleAsampling_rate, fc = .15)
xf <- list(Xf1 = Xf[[1]], Xf2 = Xf[[2]])
plott_base(xf, beaked_whaleAsampling_rate)

crop 17

crop Interactive data cropping tool.

Description

This function plots the input data # and allows the user to select start and end times for cropping.

Usage

crop(X, sampling_rate = NULL, times = NULL, quiet = FALSE)

Arguments

X A sensor list, vector or matrix. X can be regularly or irregularly sampled data in
any frame and unit.

sampling_rate The sampling rate of X in Hz. This is only needed if X is not a sensor list. If X
is regularly sampled, sampling_rate is one number.

times A vector of sampling times for X. This is only needed if X is not a sensor list
and X is not regularly sampled.

quiet If quiet is false, print to the screen

Details

Possible input combinations include: crop(X) if X is a sensor list, crop(X, sampling_rate) if X is a
vector or matrix.

Value

A list with 3 elements:

• Y: A sensor list, vector or matrix containing the cropped data segment. If the input is a sensor
list, the output will also be. The output has the same units, frame and sampling characteristics
as the input.

• times: A vector of sampling times for Y. This is only returned if X is irregularly sampled and
X is not a sensor list. If X is a sensor list, the sampling times are stored in the list.

• tcues: tcues is a two-element vector containing the start and end time cue in seconds of the
data segment kept, i.e., tcues = c(start_time, end_time).

Examples

data <- beaked_whale
Pc <- crop(data$P, quiet=TRUE)
Ydata <- Pc$data
plot(-Ydata)

18 crop_to

crop_all Reduce the time span of a dataset

Description

This function is used to reduce the time span of a dataset by cropping out any data that falls before
and after two time cues.

Usage

crop_all(tcues, X)

Arguments

tcues A two-element vector containing the start and end time cue in seconds of the
data segment to keep, i.e., tcues = c(start_time, end_time).

X A sensor list or a set of sensor lists (e.g., from load_nc).

Details

Possible input combinations: crop_all(X) if X is a sensor list or set of sensor lists, crop_all(tcues,
X, Y, ...) if X, Y, ... are sensor lists.

Value

A sensor list or set of sensor lists containing the cropped data segment. The output data have the
same units, frame and sampling characteristics as the input. The list may have many sublists which
are additional sensor structures as required to match the input.

Examples

d <- find_dives(beaked_whale$P,300)
X <- crop_all(c(d$start[1], d$end[1]), beaked_whale) #crop all data to 1st dive
plott_base(X = list(XP, XA), r = c(1, 0), panel_labels = c('Depth', 'Acc'))

crop_to Reduce the time span of data

Description

This function is used to reduce the time span of data by cropping out any data that falls before and
after two time cues.

Usage

crop_to(X, sampling_rate = NULL, tcues, times = NULL)

csv2struct 19

Arguments

X A sensor list, vector, or matrix. X can be regularly or irregularly samples data in
any frame and unit.

sampling_rate The sampling rate of X in Hz. This is only needed if X is not a sensor structure.

tcues A two-element vector containing the start and end time cues in seconds of the
data segment to keep (i.e., tcues <- c(start_time, end_time)).

times A vector of sampling times for X. This is only needed if X is not a sensor list
and X is not regularly sampled.

Value

Cropped data in the same format as X, unless X is irregularly sampled and NOT a sensor list. In
that case, the function returns a list with 2 elements:

• X: A sensor list, vector or matrix containing the cropped data segment. If the input is a sensor
list, the output will also be. The output has the same units, frame and sampling characteristics
as the input.

• times: A vector of sampling times for Y. This is only returned if X is irregularly sampled and
X is not a sensor list. (If X is a sensor list, the sampling times are stored in the list.)

Examples

d <- find_dives(beaked_whale$P,300)
P2 <- crop_to(beaked_whale$P, tcues = c(d$start[1], d$end[1])) #crop to 1st dive
plott_base(X = list(P2), r=c(1), panel_labels=c('Depth'))

csv2struct Read tag metadata from csv

Description

Read a CSV metadata file and convert it into a metadata list. A metadata file is a comma-separated
text file (.csv) containing a line for each metadata entry. The first comma-separated field in each
line is the name of the entry. The last field in each line contains the value to be assigned to this
metadata entry. The value can be a string or number but is always saved as a string in the structure
- it is up to downstream users of the metadata to parse/decode the entries.

Usage

csv2struct(fname)

Arguments

fname Name of the text file to be read. If no file extension is provided, ’.csv’ will be
added automatically. If the file is not located in the current working directory,
then fname must include the correct relative or absolute path.

20 decdc

Value

a metadata list populated from fname (one list element per row in the file). All list elements are
stored as "character" class objects (even if the field contains a number, a date, etc) - no attempt is
made to determine the most appropriate class for each item.

Examples

hold <- system.file("extdata","metadata_example.csv", package = "tagtools", mustWork = TRUE)
S <- csv2struct(hold)

decdc Reduce the sampling rate

Description

This function is used to reduce the sampling rate of a time series by an integer factor.

Usage

decdc(x, df)

Arguments

x A data structure, vector or matrix containing the signal(s) to be decimated. If x
is a matrix, each column is decimated separately.

df The decimation factor. The output sampling rate is the input sampling rate di-
vided by df. df must be an integer greater than 1.

Value

y The decimated signal vector or matrix. It has the same number of columns as x but has 1/df of the
rows.

Note

Decimation is performed by first low-pass filtering x and then keeping 1 sample out of every df.
A symmetric FIR filter with length 12*df and cutoff frequency 0.4*fs/df is used. The group delay
of the filter is removed. For large decimation factors (e.g., df»50), it is better to perform several
decimations with lower factors. For example to decimate by 120, use: decdc(decdc(x,10),12).

Examples

s <- matrix(sin(2 * pi / 100 * c(0:1000) - 1), ncol = 1)
plot(c(1:length(s)), s)
y <- decdc(x = s, df = 4)
plot(c(1:length(y)), y)

decz 21

decz Decimate sampling rate recursively.

Description

Recursive sampling rate decimator. This function can be run iteratively over a long data set, e.g., to
decimate an entire recording that is too large to be read into memory.

Usage

decz(x, df = NULL, Z = NULL, nf = 12, frbw = 0.8)

Arguments

x A vector, matrix, or tag data list containing the signal(s) to be decimated. If x
is a matrix, each column is decimated separately. If inputs df and Z are both
provided, then the value of df stored in Z will override the user-provided df.

df The decimation factor. The output sampling rate is the input sampling rate di-
vided by df. df must be an integer greater than 1. df can also be a three element
vector in which case: df(1) is the decimation factor; df(2) is the number of out-
put samples spanned by the filter (default value is 12). A larger value makes the
filter steeper; df(3) is the fractional bandwidth of the filter (default value is 0.8)
relative to the output Nyquist frequency. If df(2) is greater than 12, df(3) can be
closer to 1.

Z The ’state’ list that is generated by a previous call to decz. This is how the
function keeps track of filter internal values (i.e., memory) from call-to-call.

nf The number of output samples spanned by the filter (default value is 12). A
larger value makes the filter steeper.

frbw The fractional bandwidth of the filter (default value is 0.8) relative to the output
Nyquist frequency. If nf is greater than 12, frbw can be closer to 1.

Details

The first time decz is called, use the following format: y = decz(x,df). The subsequent calls to decz
for contiguous input data are: decz(x,Z). The final call when there is no more input data is: decz(x =
NULL, Z = Z). Each output y in the above contains a segment of the decimated signal and so these
need to be concatenated. Decimation is performed in the same way as for decdc. The group delay
of the filter is removed. For large decimation factors (e.g., df much greater than 50), it is better to
perform several nested decimations with lower factors.

Value

A list with elements:

• y: The decimated signal vector or matrix. It has the same number of columns as x but has,
on average, 1/df of the rows.

22 depth2pressure

• Z: The state list (for internal tracking of filter internal values). Contains elements df (the
decimation factor), nf (used to compute the filter length), frbw (the bandwidth of the filter
relative to the new Nyquist frequency), h (the FIR filter coefficients), n (the filter length), z
(padded signal used for filtering), and ov ("overflow" samples to be passed to future iterations).

See Also

decdc

Examples

plott_base(list(Accel = beaked_whale$A)) # acceleration data before decimation
a_rows <- nrow(beaked_whaleAdata)
a_ind <- data.frame(start = c(1, floor(a_rows / 3), floor(2 * a_rows / 3)))
a_ind$end <- c(a_ind$start[2:3] - 1, a_rows)
df <- 10
Z <- NULL
y <- NULL
for (k in 1:nrow(a_ind)) {

decz_out <- decz(
x = beaked_whaleAdata[c(a_ind[k, 1]:a_ind[k, 2]),],
df = df, Z = Z

)
df <- NULL
Z <- decz_out$Z
y <- rbind(y, decz_out$y)

}

depth2pressure Convert depth to pressure

Description

This function is used to convert the depth (in meters) to the pressure in Pascals.

Usage

depth2pressure(d, latitude)

Arguments

d The depth in meters

latitude The latitude in degrees

Value

The pressure in Pa

depth_rate 23

Note

Based on the Leroy and Parthiot (1998) formula. See: http://resource.npl.co.uk/acoustics/techguides/soundseawater/content.html#UNESCO

Examples

depth2pressure(1000, 27)

depth_rate Estimate the vertical velocity

Description

This function is used to estimate the vertical velocity by differentiating a depth or altitude time
series. A low-pass filter reduces the sensor noise that is amplified by the differentiation.

Usage

depth_rate(p, fs, fc, depth)

Arguments

p A vector of depth or altitude data, or an animaltags list object containing depth
or altitude data.

fs (required only if p is a vector) is the sampling rate of p in Hz.
fc (optional) A smoothing filter cut-off frequency in Hz. If fc is not given, a default

value is used of 0.2 Hz (5 second time constant).
depth (optional) The behavior of animals. Required only if dealing with animals not

behave descent but ascent.

Value

v, The vertical velocity with the same sampling rate as p. v is a vector with the same dimensions as
p. The unit of v depends on the unit of p. For example, if p is in meters, v is in meters/second

Note

The low-pass filter is a symmetric FIR with length 4fs/fc. The group delay of the filters is removed.
Usually, the function handles data pertaining to diving animals, where data is measured as the depth
beneath the water surface. For ascending data coming from birds and alike data, setting depth =
FALSE will help calculating the right vertical velocity.

Examples

v <- depth_rate(p = beaked_whale$P)
plott_base(list(beaked_whalePdata, v),

fs = beaked_whalePsampling_rate,
r = c(1, 0), panel_labels = c("Depth\n(m)", "Vertical Velocity\n(m/s)")

)

24 detect_peaks

detect_peaks Detect peaks in signal vector data

Description

This function detects peaks in time series data that exceed a specified threshold and returns each
peak’s start time, end time, maximum peak value, time of the maximum peak value, threshold level,
and blanking time.

Usage

detect_peaks(
data,
sr,
FUN = NULL,
thresh = NULL,
bktime = NULL,
plot_peaks = NULL,
quiet = FALSE,
...

)

Arguments

data A vector (of all positive values) or matrix of data to be used in peak detection.
If data is a matrix, you must specify a FUN to be applied to data.

sr The sampling rate in Hz of the date. This is the same as fs in other tagtools
functions. This is used to calculate the bktime in the case that the input for
bktime is missing.

FUN A function to be applied to data before the data is run through the peak detector.
Only specify the function name (i.e. njerk). If left blank, the data input will be
immediately passed through the peak detector.

thresh The threshold level above which peaks in signal are detected. Inputs must be in
the same units as the signal. If the input for thresh is missing/empty, the default
level is the 0.99 quantile

bktime The specified length of time (seconds) between signal values detected above
the threshold value (from the moment the first peak recedes below the thresh-
old level to the moment the second peak surpasses the threshold level) that is
required for each value to be considered a separate and unique peak. If the in-
put for bktime is missing/empty the default value for the blanking time is set
as the .80 quantile of the vector of time differences for signal values above the
specified threshold.

plot_peaks A conditional input. If the input is TRUE or missing, an interactive plot is
generated, allowing the user to manipulate the thresh and bktime values and
observe the changes in peak detection. If the input is FALSE, the interactive

dive_stats 25

plot is not generated. Look to the console for help on how to use the plot upon
running of this function.

quiet If quiet is true, do not print to the screen

... Additional inputs to be passed to FUN

Value

A data frame containing the start times, end times, peak times, peak maxima, thresh, and bktime.
All times are presented as the sampling value.

Note

As specified above under the description for the input of plot_peaks, an interactive plot can be
generated, allowing the user to manipulate the thresh and bktime values and observe the changes in
peak detection. The plot output is only given if the input for plot_peaks is specified as true or if the
input is left missing/empty.

Examples

BW <- beaked_whale
detect_peaks(data = BWAdata, sr = BWAsampling_rate,
FUN = njerk, thresh = NULL, bktime = NULL,
plot_peaks = NULL, sampling_rate = BWAsampling_rate, quiet=TRUE)

dive_stats Compute summary statistics for dives or flights

Description

Given a depth/altitude profile and a series of dive/flight start and end times, compute summary dive
statistics.

Usage

dive_stats(
P,
X = NULL,
dive_cues,
sampling_rate = NULL,
prop = 0.85,
angular = FALSE,
X_name = NULL,
na.rm = TRUE

)

26 dive_stats

Arguments

P Depth data. A vector (or one-column matrix), or a tag sensor data list.

X (optional) Another data stream (as a vector (or a one-column matrix) or a tag
sensor data list) for which to compute mean and variability. If angular is TRUE,
interpreted as angular data (for example pitch, roll, or heading) and means and
variances are computed accordingly. The unit of measure must be radians (NOT
degrees). Currently, X must be regularly sampled.

dive_cues A two-column data frame or matrix with dive/flight start times in the first column
and dive/flight end times in the second. May be obtained from find_dives.
Units should be seconds since start of tag recording.

sampling_rate (optional and ignored if P or X are tag sensor data lists) Sampling rate of P (and
X, if X is given). If omitted, then input data must be sensor data lists. If one
value is given and both P and X are input, they are assumed to have the same
sampling rate. If P and X have different sampling rates, then this input can have
two elements (first for P, second for X).

prop The proportion of the maximal excursion to use for defining the "destination"
phase of a dive or flight. For example, if prop is 0.85 (the default), then the
destination phase lasts from the first to the last time depth/altitude exceeds 0.85
times the within-dive maximum.

angular Is X angular data? Defaults to FALSE.

X_name A short name to use for X variable in the output data frame. For example, if X is
pitch data, use X_name=’pitch’ to get outputs column names like mean_pitch,
etc. Defaults to ’angle’ for angular data and ’aux’ for non-angular data.

na.rm Logical, default is TRUE. If TRUE, then returned mean values ignore missing
values, computing an average over all non-missing observations.

Details

In addition to the maximum excursion and duration, dive_stats divides each excursion into three
phases: "to" (descent for dives, ascent for flights), "from" (ascent for dives, descent for flights),
and "destination". The "destination" (bottom for dives and top for flights) phase of the excursion
is identified using a "proportion of maximum depth/altitude" method, whereby for example the
bottom phase of a dive lasts from the first to the last time the depth exceeds a stated proportion
of the maximum depth. Average vertical velocity is computed for the to and from phases using a
simple method: total depth/altitude change divided by total time. If an angular data variable is also
supplied (for example, pitch, roll or heading), then the circular mean (computed via circ.mean)
and variance (computed via circ.disp and reporting the var output) are also computed for each
dive phase and the dive as a whole.

Value

A data frame with one row for each dive/flight and columns as detailed below. All times are in
seconds, and rates in units of x/sec where x is the units of P.

• max The maximum depth or altitude

• st start time of dive (seconds) - from input dive_cues

draw_axis 27

• et end time of dive (seconds) - from input dive_cues
• dur The duration of the excursion
• dest_st The start time of the destination phase in seconds since start of tag recording (which

is also the end time of to phase)
• dest_et The end time of the destination phase in seconds since start of tag recording (which

is also the start of the from phase).
• dest_dur The duration in seconds of destination phase
• to_dur The duration in seconds of to phase
• from_dur The duration in seconds of from phase
• mean_angle If angular=TRUE and X is input, the mean angle for the entire excursion. Val-

ues for each phase are also provided in columns mean_to_angle, mean_dest_angle, and
mean_from_angle.

• angle_var If angular=TRUE and X is input, the angular variance for the entire excursion. Val-
ues for each phase are also provided individually in columns to_angle_var, dest_angle_var,
and from_angle_var.

• mean_aux If angular=FALSE and X is input, the mean value of X for the entire excursion.
Values for each phase are also provided in columns mean_to_aux, mean_dest_aux, and
mean_from_aux.

• aux_sd If angular=FALSE and X is input, the standard deviation of X for the entire excursion.
Values for each phase are also provided individually in columns to_aux_sd, dest_aux_sd,
and from_aux_sd.

See Also

find_dives

draw_axis Draw time axis on plott plot.

Description

This function is called by plott to add a time axis to a plot created by plott. Users are unlikely to
need to call the function directly.

Usage

draw_axis(side = 1, x = NULL, date_time, last_panel)

Arguments

side see axis.
x A date-time or date object, or other types of objects that can be converted ap-

propriately.
date_time Logical. Is the data being plotted date-time (POSIX) or time in seconds?
last_panel Logical. Is this the last panel (in other words, should x axis tick labels be

drawn)?

28 dsf

Value

a time axis on a graph

dsf Estimate the dominant stroke frequency

Description

This function can be used to estimate the dominant stroke frequency from triaxial accelerometer
data [ax,ay,az].

Usage

dsf(A, sampling_rate = NULL, fc = NULL, Nfft = NULL)

Arguments

A A sensor data list or an nx3 acceleration matrix with columns [ax ay az]. Accel-
eration can be in any consistent unit, e.g., g or m/s^2.

sampling_rate The sampling rate of the sensor data in Hz (samples per second).

fc (optional) The cut-off frequency in Hz of a low-pass filter to apply to A before
computing the spectra. This prevents high frequency transients e.g., in foraging,
from dominating the spectra. The filter length is 6*sampling_rate/fc. If fc is not
specified, it defaults to 2.5 Hz. If fc>sampling_rate/2, the filtering operation is
skipped.

Nfft (optional) The FFT length and therefore the frequency resolution. The default
value is the power of two closest to 20*sampling_rate, i.e., an analysis block
length of about 20 s and a frequency resolution of about 0.05 Hz. A shorter FFT
may be required if movement behaviour is very variable. A longer FFT may
work well if propulsion is continuous and stereotyped.

Details

Animals tend to produce propulsive movements with a narrow frequency range. These movements
cause cyclical changes in posture and/or specific acceleration, both of which are measured by an
animal-attached accelerometer. Thus sections of accelerometer data that largely contain propulsion
should show a spectral peak in one or more axes at the dominant stroke frequency.

Value

A list with 2 elements:

• fpk: The dominant stroke frequency (i.e., the peak frequency in the sum of the acceleration
power spectra) in Hz. Quadratic interpolation is used over the spectral peak to improve reso-
lution.

• q: The quality of the peak measured by the peak power divided by the mean power of the
spectra. This is a dimensionless number which is large if there is a clear spectral peak.

euler2rotmat 29

Note

Frame: This function makes no assumption about accelerometer frame. Data in any frame can be
used.

Data selection: This function works best if the sensor matrix, A, covers an interval in which propul-
sion is the main activity. This could be a complete dive or an interval of running or flapping flight.
The interval length should be at least Nfft/sampling_rate seconds, i.e., 20 s for the default FFT
length.

Examples

dsf(harbor_seal$A)

euler2rotmat Make a rotation (or direction cosine) matrix

Description

This function is used to make a rotation (or direction cosine) matrix out of sets of Euler angles,
pitch, roll, and heading.

Usage

euler2rotmat(p, r, h)

Arguments

p The pitch angle in radians.

r The roll angle in radians.

h The heading or yaw angle in radians.

Value

One or more 3x3 rotation matrices. If p, r, and h are all scalars, Q is a 3x3 matrix, Q = H

Examples

vec1 <- matrix(c(1:10), nrow = 10)
vec2 <- matrix(c(11:20), nrow = 10)
vec3 <- matrix(c(21:30), nrow = 10)
Q <- euler2rotmat(p = vec1, r = vec2, h = vec3)

30 extract_cues

extract Extract a sub-sample of data

Description

This function is used to extract a sub-sample of data from a vector or matrix.

Usage

extract(x, sampling_rate, tst, ted)

Arguments

x A vector or matrix of measurements. If x is a matrix, each column is treated as
a separate measurement vector.

sampling_rate the sampling rate in Hz of the data in x.

tst Defines the start time in seconds of the interval to be extracted from x.

ted Defines the end time in seconds of the interval to be extracted from x.

Value

X: A matrix containing a sub-sample of x. X has the same number of columns as x. The length of
the sub-sample will be round(sampling_rate*(tend-tstart)) samples.

Note

Output sampling rate is the same as the input sampling rate.

If either tst or ted are beyond the length of x, non-existing samples will be replaced with NaN in X.

Examples

BW <- beaked_whale
BW_subset <- extract(x = BWAdata, sampling_rate = BWAsampling_rate, tst = 3, ted = 100)

extract_cues Extract multiple sub-samples of data

Description

This function is used to extract multiple sub-samples of data from a vector or matrix.

Usage

extract_cues(x, sampling_rate, cues, len)

find_dives 31

Arguments

x is a vector or matrix of measurements. If x is a matrix, each column is treated as
a separate measurement vector.

sampling_rate is the sampling rate in Hz of the data in x.

cues defines the start time in seconds of the intervals to be extracted from x.

len is the length of the interval to extract in seconds. This should be a scalar.

Value

A list with 2 elements:

• X: A matrix containing sub-samples of x. If x is a vector, X has as many columns as
there are cues, i.e., each cue generates a column of X. If x is a pxm matrix, X will be a
qxmxn matrix where n is the size of cues and q is the length of the interval requested, i.e.,
round(sampling_rate*len) samples.

• cues: The list of cues actually used. cues that require data outside of x are rejected.

Note

Output sampling rate is the same as the input sampling rate.

Examples

BW <- beaked_whale # beaked_whale must be in your working directory
list <- extract_cues(x = BWAdata, sampling_rate = BWAsampling_rate, cues = c(6, 40), len = 11)

find_dives Find time cues for dives

Description

This function is used to find the time cues for the start and end of either dives in a depth record or
flights in an altitude record.

Usage

find_dives(p, mindepth, sampling_rate = NULL, surface = 1, findall = 0)

Arguments

p A depth or altitude time series (a sensor data list or a vector) in meters.

mindepth The threshold in meters at which to recognize a dive or flight. Dives shallow or
flights lower than mindepth will be ignored.

sampling_rate The sampling rate of the sensor data in Hz (samples per second).

32 fir_nodelay

surface (optional) The threshold in meters at which the animal is presumed to have
reached the surface. Default value is 1. A smaller value can be used if the
dive/altitude data are very accurate and you need to detect shallow dives/flights.

findall (optional) When TRUE, forces the algorithm to include incomplete dives at the
start and end of the record. Default is FALSE which only recognizes complete
dives.

Value

dives is a data frame with one row for each dive/flight found. The columns of dives are: start (time
in seconds of the start of each dive/flight), end (time in seconds of the start of each dive/flight), max
(maximum depth/altitude reached in each dive/flight), tmax (time in seconds at which the animal
reaches the max depth/altitude).

Examples

BW <- beaked_whale
dives <- find_dives(p = BWPdata,
sampling_rate = BWPsampling_rate,
mindepth = 25, surface = 5,
findall = FALSE)

fir_nodelay Delay-free filtering

Description

This function is used to gather a delay-free filtering using a linear-phase (symmetric) FIR filter
followed by group delay correction. Delay-free filtering is needed when the relative timing between
signals is important e.g., when integrating signals that have been sampled at different rates.

Usage

fir_nodelay(x, n, fc, qual = "low", return_coefs = FALSE)

Arguments

x The signal to be filtered. It can be multi-channel with a signal in each column,
e.g., an acceleration matrix. The number of samples (i.e., the number of rows in
x) must be larger than the filter length, n.

n The length of symmetric FIR filter to use in units of input samples (i.e., samples
of x). The length should be at least 4/fc. A longer filter gives a steeper cut-off.

fc The filter cut-off frequency relative to sampling_rate/2=1. If a single number is
given, the filter is a low-pass or high-pass. If fc is a vector with two numbers,
the filter is a bandpass filter with lower and upper cut-off frequencies given by
fc(1) and fc(2). For a bandpass filter, n should be at least 4/fc(1) or 4/diff(fc)
whichever is larger.

fit_tracks 33

qual An optional qualifier determining if the filter is: "low" for low-pass (the default
value if fc has a single number), or "high" for high-pass. Default is "low".

return_coefs Logical. Return filter coefficients instead of filtered signal? If TRUE, the func-
tion will return the FIR filter coefficients instead of the filtered signal. Default
is FALSE.

Value

If return_coefs is FALSE (the default), fir_nodelay() returns the filtered signal (same size as x).
If return_coefs is TRUE, returns the vector of filter coefficients only.

Note

The filter is generated by a call to fir1: h <- fir1(n, fc, qual).

h is always an odd length filter even if n is even. This is needed to ensure that the filter is both
symmetric and has a group delay which is an integer number of samples.

The filter has a support of n samples, i.e., it uses n samples from x to compute each sample in y.

The input samples used are those from n/2 samples before to n/2 samples after the sample number
being computed. This means that samples at the start and end of the output vector y need input
samples before the start of x and after the end of x. These are faked by reversing the first n/2
samples of x and concatenating them to the start of x. The same trick is used at the end of x. As
a result, the first and last n/2 samples in y are untrustworthy. This initial condition problem is true
for any filter but the FIR filter used here makes it easy to identify precisely which samples are
unreliable.

Examples

x <- sin(t(2 * pi * 0.05 * (1:100)) +
t(cos(2 * pi * 0.25 * (1:100))))

Y <- fir_nodelay(x = x, n = 30, fc = 0.2, qual = "low")
plot(c(1:length(x)), x,

type = "l", col = "grey42",
xlab = "index", ylab = "input x and output y"

)
lines(c(1:length(Y)), Y, lwd = 2)

fit_tracks Integrate track with reference positions

Description

Simple track integration method to merge infrequent but accurate positions with a regularly sampled
track that is not absolutely accurate.

Usage

fit_tracks(P, times = NULL, D, sampling_rate)

34 fix_offset_3d

Arguments

P a two column matrix or data frame containing the anchor positions. The first
column should be the "northing" and the second the "easting" coordinates. (If
data frame is input, then columns with those two names, in any position, will be
used if present).

times a vector of times corresponding to the positions P. If P is a data frame with
a column called "times" then that column will be used. Times are in seconds
since the start of the regularly sampled track. times must have the same number
of rows as P. Times must be greater than or equal to 0 and less than the time
length of the regularly sampled track.

D a two column matrix containing the regularly sampled track points. If D is a data
frame with columns named ’northing’ and ’easting’ those will be used regardless
of position; otherwise the first column will be northing and the second easting.
The two columns contain the ’x’ and ’y’ coordinates of the track points in a local
level frame. Units, axes and frame must match those of P.

sampling_rate is the sampling rate in Hz of D.

Value

D, a data frame with 4 columns: "northing" and "easting" along the new track, and "current_n"
and "current_e", the track increments needed to match the tracks. If the difference between the two
tracks is due to the medium moving, these increments can be considered an estimate of the current
in m/s. The axes and frame are the same as for the input data.

fix_offset_3d Estimate the offset in each axis

Description

This function is used to estimate the offset in each axis of a triaxial field measurement, e.g., from an
accelerometer or magnetometer. This is useful for correcting drift or calibration errors in a sensor.

Usage

fix_offset_3d(X)

Arguments

X A sensor list or matrix containing measurements from a triaxial field sensor such
as an accelerometer of magnetometer. X can be in any units and frame.

fix_pressure 35

Value

A list with 2 elements:

• X: A sensor list or matrix containing the adjusted triaxial sensor measurements. It is the same
size and has the same sampling rate and units as the input data. If the input is a sensor list, the
output will also.

• G: A calibration list containing one field: G$poly. The first column of G$poly contains 1 as
this function does not adjust the scale factor of X. The second column of G$poly is the offset
added to each column of X.

Note

This function is only usable for field sensors. It will not work for gyroscope data.

Examples

s <- fix_offset_3d(harbor_seal$A)

fix_pressure Correct a depth or altitude profile

Description

This function is used to correct a depth or altitude profile for offsets caused by miscalibration
and temperature. This function finds minima in the dive/altitude profile that are consistent with
surfacing/landing. It uses the depth/height at these points to fit a temperature regression.

Usage

fix_pressure(p, t, sampling_rate, maxp = NULL)

Arguments

p A sensor list or vector of depth/altitude in meters

t A sensor list or vector of temperature in degrees Celsius

sampling_rate The sampling_rate of p and t in Hz. This is only needed if p and t are not sensor
lists. The depth and temperature must both have the same sampling rate (use
‘decdc‘ if needed to achieve this).

maxp The maximum depth or altitude reading in the pressure data for which the animal
could actually be at the surface. This is a rough measurement of the potential
error in the pressure data. The unit is meters. Start with a small value, e.g., 2m
and rerun fix_pressure with a larger value if there are still obvious temperature-
related errors in the resulting depth/altitude profile.

36 get_species

Value

A list with 2 elements:

• p: A sensor list or vector of corrected depth/altitude measurements at the same sampling rate
as the input data. If the input is a sensor list, the output will also be.

• pc: A list containing the pressure offset and temperature correction coefficients. It has fields:
pc$tref which is the temperature compensation polynomial. This is used within the function
to correct pressure as follows: p + stats::polyval(pc$tcomp, t - pc$tref).

Note

This function makes a number of assumptions about the depth/altitude data and about the behaviour
of animals: First, the depth data should have few incorrect outlier (negative) values that fall well
beyond the surface. These can be reduced using median_filter.m before calling fix_depth. Second,
the animal is assumed to be near the surface at least 2

get_researcher Find matching researcher in a list of known tag researchers

Description

Find matching researcher in a list of known tag researchers

Usage

get_researcher(initial)

Arguments

initial a two-letter code for the researcher of interest (first letter of first name and first
letter of last name)

get_species Find matching species in a list of marine mammals

Description

Find matching species in a list of marine mammals

Usage

get_species(initial)

Arguments

initial a two-letter code for the species of interest (first letter of Genus and first letter
of species)

harbor_seal 37

harbor_seal Set of sensor lists for a harbor seal

Description

Data is from a _Phoca vitulina_ with tag ID ’hs16_265c’. The device used was a DTAG4 and it was
deployed at 2016-09-21 07:55:22 in Husum, Germany.

Usage

harbor_seal

Format

A set of sensor lists:

A sensor list containing a triaxial acceleration matrix sampled at 5 Hz

M sensor list containing a triaxial magnetometer matrix sampled at 5 Hz

P sensor list containing a pressure (depth) vector sampled at 5 Hz

POS sensor list containing a position matrix with columns [sampling time, latitude, longitude]

hilbert_env Compute the envelope of X using Hilbert transform. Compute the en-
velope of the signal matrix X using the Hilbert transform. To avoid
long transforms, this function uses the overlap and add method.

Description

Compute the envelope of X using Hilbert transform.

Compute the envelope of the signal matrix X using the Hilbert transform. To avoid long transforms,
this function uses the overlap and add method.

Usage

hilbert_env(X, N = 1024)

Arguments

X a vector or matrix of signals. If X is a matrix, each column is treated as a separate
signal. The signals must be regularly sampled for the result to be correctly
interpretable as the envelope.

N (optional) specifies the transform length used. The default value is 1024 and this
may be fine for most situations.

38 hilbert_transform

Value

E, the envelope of X. E is the same size as X: it has the same number of columns and the same
number of samples per signal. It has the same units as X but being an envelope, all values are >=0.

Examples

s <- matrix(sin(0.1 * c(1:10000)), ncol = 1) *
matrix(sin(0.001 * c(1:10000)), ncol = 1)

E <- hilbert_env(s)
plot(c(1:length(s)), s, col = 'grey34')
lines(c(1:length(E)), E, col = 'black')

hilbert_transform Return the Hilbert transform of a signal

Description

This function is used to compute the Hilbert transform of a signal. It is based on function Hilbert-
Transform() from (defunct) package hht, which was modified from the EMD package by Donghoh
Kim and Hee-Seok Oh (http://dasan.sejong.ac.kr/~dhkim/software.emd.html)

Usage

hilbert_transform(x)

Arguments

x The signal vector to be buffered

Value

The "analytic signal," in other words the Hilbert transform of the input signal x

Examples

timez <- seq(from = 0, by = 1/1024, to = 1)
x <- sin(2*pi*60*timez)
y <- hilbert_transform(x)

htrack 39

htrack Simple horizontal dead-reckoned track

Description

This function is used to estimate the simple horizontal dead-reckoned track (pseudo-track) based on
speed and heading. This differs from ptrack in that the animals body angle is not considered. This
makes it appropriate for animals that do not always move in the direction of their longitudinal axis.

Usage

htrack(A, M, s, sampling_rate = NULL, fc = 0.2)

Arguments

A The nx3 acceleration matrix with columns [ax ay az] or acceleration sensor list.
Acceleration can be in any consistent unit, e.g., g or m/s^2.

M The magnetometer signal matrix, M = [mx,my,mz] in any consistent unit (e.g.,
in uT or Gauss) or magnetometer sensor list. A and M must have the same size
(and so are both measured at the same sampling rate).

s The forward speed of the animal in m/s. s can be a single number meaning that
the animal is assumed to travel at a constant speed. s can also be a vector with
the same number of rows as M, e.g., generated by ocdr.

sampling_rate The sampling rate of the sensor data in Hz (samples per second).

fc (optional) Specifies the cut-off frequency of a low-pass filter to apply to A and
M before computing heading. The filter cut-off frequency is in Hz. The filter
length is 4*sampling_rate/fc. Filtering adds no group delay. If fc is empty or
not given, the default value of 0.2 Hz (i.e., a 5 second time constant) is used.

Value

Data frame track containing the estimated track in a local level frame. The track is defined as
meters of northward and eastward movement (termed ’northing’ and ’easting’, i.e, columns of track
are northing and easting relative to the animal’s position at the start of the measurements (which
is defined as [0,0]). The track sampling rate is the same as for the input data and so each row of
track defines the track coordinates at times 0,1/sampling_rate,2/sampling_rate,... relative to the start
time of the measurements.

Note

Frame: This function assumes a [north,east,up] navigation frame and a [forward,right,up] local
frame. Both A and M must be rotated if needed to match the animal’s cardinal axes otherwise the
track will not be meaningful. Unless the local declination angle is also corrected with rotframe, the
dead-reckoned track will use magnetic north rather than true north.

40 image_irreg

CAUTION: dead-reckoned tracks are usually very inaccurate. They are useful to get an idea of
HOW animals move rather than WHERE they go. Few animals probably travel in exactly the direc-
tion of their longitudinal axis. Additionally, measuring the precise orientation of the longitudinal
axis of a non-rigid animal is fraught with error. Moreover, if there is net flow in the medium, the an-
imal will be advected by the flow in addition to its autonomous movement. For swimming animals
this can lead to substantial errors. The forward speed is assumed to be with respect to the medium
so the track derived here is NOT the ’track-made-good’, i.e., the geographic movement of the an-
imal. It estimates the movement of the animal with respect to the medium. There are numerous
other sources of error so use at your own risk!

See Also

ptrack, fit_tracks, track3D

Examples

bwhtrack <- htrack(A = beaked_whale$A, M = beaked_whale$M, s = 4)
plot(bwhtrack$easting, bwhtrack$northing, xlab = "Easting, m", ylab = "Northing, m")

image_irreg Plot an image with an irregular grid.

Description

This function is used to plot an image with an irregular grid. This is useful for plotting matrix
data (i.e., sampled data that is a function of two parameters) in which one or both of the sampling
schemes is not regularly spaced. image_irreg plots R(i,j) as a coloured patch centered on x(i), y(j)
and with dimension determined by x[i] - x[i-1] and y[i] - y[i-1].

Usage

image_irreg(x, y, R)

Arguments

x is a vector with the horizontal axis coordinates of each value in R.

y is a vector with the vertical axis coordinates of each value in R.

R is a matrix of measurements to display. The values in R are converted to colours
in the current colormap and caxis. R must be length(x) by length(y). Use NaN
to have a patch not display.

Value

an image plot on an irregular grid

inclination 41

inclination Estimate the inclination angle

Description

This function is used to estimate the local magnetic field vector inclination angle directly from
acceleration and magnetic field measurements.

Usage

inclination(A, M, fc = NULL)

Arguments

A The accelerometer data structure or signal matrix, A = [ax,ay,az] in any consis-
tent unit (e.g., in g or m/s2). A can be in any frame.

M The magnetometer data structure or signal matrix, M = [mx,my,mz] in any con-
sistent unit (e.g., in uT or Gauss). M must be in the same frame as A.

fc (optional) The cut-off frequency of a low-pass filter to apply to A and M before
computing the inclination angle. The filter cut-off frequency is with respect to
1=Nyquist frequency. Filtering adds no group delay. If fc is not specified, no
filtering is performed.

Value

The magnetic field inclination angle in radians.

Note

Output sampling rate is the same as the input sampling rate.

Frame: This function assumes a [north,east,up] navigation frame and a [forward,right,up] local
frame. In these frames, the magnetic field vector has a positive inclination angle when it points
below the horizon. Other frames can be used as long as A and M are in the same frame however the
interpretation of incl will differ accordingly.

Examples

A <- matrix(c(1, -0.5, 0.1, 0.8, -0.2, 0.6, 0.5, -0.9, -0.7),
byrow = TRUE, nrow = 3, ncol = 3

)
M <- matrix(c(1.3, -0.25, 0.16, 0.78, -0.3, 0.5, 0.5, -0.49, -0.6),

byrow = TRUE, nrow = 3, ncol = 3
)
incl <- inclination(A, M)

42 interp2length

interp2length Interpolate regularly sampled data to increase its sampling rate and
match its length to another variable.

Description

This function is used to reduce the time span of data by cropping out any data that falls before and
after two time cues.

Usage

interp2length(X, Z, fs_in = NULL, fs_out = NULL, n_out = NULL)

Arguments

X A sensor list, vector, or matrix. If x is or contains matrix, each column is treated
as an independent signal.

Z is a sensor structure, vector or matrix whose sampling rate and length is to be
matched.

fs_in is the sampling rate in Hz of the data in X. This is only needed if X is not a
sensor structure.

fs_out is the required new sampling rate in Hz. This is only needed if Z is not given.

n_out is an optional length for the output data. If n_out is not given, the output data
length will be the input data length * fs_out/fs_in.

Value

Y is a sensor structure, vector or matrix of interpolated data with the same number of columns as
X.

Examples

plott_base(X = list(harbor_seal$P), fsx = 5)
P_dec <- decdc(harbor_seal$P, 5)
P_interp <- interp2length(X = P_dec, Z = harbor_seal$A)
plott_base(X = list(P_interp$data), fsx = 1)

interp_nan 43

interp_nan Remove NAs from sensor data and return indices of (rows of) filled
values

Description

This is an internal function used by htrack

Usage

interp_nan(data)

Arguments

data a data vector or matrix

Value

A list with entries data (the input data with NAs filled in) and k a logical vector indicating the
position (if data was a vector) or rows (if data was a matrix) where NAs were filled in. Internal NAs
are filled via linear interoplation, while leading and trailing ones are filled using the first following
or last preceding good value.

Examples

A <- matrix(c(NA, NA, 3, 4, 5, 6, 7, 8, 9, 10, NA, NA, 13, 14, 15, 16, NA, NA), ncol = 2)
result <- interp_nan(A)

inv_axis Identify invariant axis in triaxial movement measurements.

Description

This function processes tri-axial movement data (for example, from an accelerometer, magentome-
ter or gyroscope) to identify the one axis that varies the least, i.e., the invariant axis.

Usage

inv_axis(data)

Arguments

data The triaxial sensor measurement axis e.g., from on accelerometer or magne-
tometer. The frame and unit of A do not matter.

44 julian_day

Details

Rotational and linear movement in some types of propulsion largely occur in 2 dimensions e.g.,
body rotation in cetacean caudal propulsion occurs around the animal’s transverse axis. Likewise
sychronized wing flaps in flight or pectoral swimming may generate acceleration in the longitudinal
and dorso-ventral axes but much less in the transverse axis. This function identifies the direction of
the axis that moves the least in a movement matrix.

Value

A list with two entries:

• V A 3x1 numeric vector defining the least varying axis in data. This vector is a direction
vector so has a magnitude of 1 and is unit-less. The vector is defined in the same frame as A,
so the first, second, and third entries correspond to the first, second and third columns of the
data matrix, and axis orientation conventions are preserved.

• q The proportion of movement in the invariant axis. A small number (e.g., less than 0.05)
implies that very little movement occurs in this axis and so the movement is largely planar
(i.e., two-dimensional). If the fraction is much larger than 0.05, the motion in A is better
described as three-dimensional. q is a proportion and so it is unitless.

Note

This function returns one invariant axis that applies to the entire input signal so it is important to
choose a relevant sub-sample of movement data, A, to analyse.

Examples

s <- matrix(sin(2 * pi * 0.1 * c(1:100)), ncol=1)
A <- s %*% c(0.9, -0.4, 0.3) + s^2 %*% c(0, 0.2, 0.1)
inv_axis_out <- inv_axis(A)

julian_day Convert between dates and Julian day numbers.

Description

This function is used to convert between dates and Julian day numbers. There are three different
input arrangements, each of which returns a different output. For a description of the different input
arrangements, see below.

Usage

julian_day(y = NULL, m = NULL, d = NULL)

lalo2llf 45

Arguments

y A single year or vector of years

m A single month or vector of months

d A single day or vector of days

Details

Possible input combinations: (n <- julian_day()) returns the Julian day number for today. (n =
julian_day(y,d)) where y is a single year or a vector of years and d is a single day number or
a vector of daynumbers, returns the date vector [year,month,day] for each year, day pair. (n =
julian_day(y,m,d)) where y is a single year or a vector of years, m is a single month or vector of
months, and d is a single month day or a vector of month days, returns the Julian day number for
each year, month, day.

Value

See the description section for details on the return.

Examples

julian_day(y = 2016, d = 12, m = 10)
julian_day(y = 2016, 286)

lalo2llf Convert latitude-longitude track points into a local level frame

Description

Convert latitude-longitude track points into a local level frame

Usage

lalo2llf(trk, pt = NULL)

Arguments

trk A data frame, two-column matrix, two-element vector of track points c(latitude,
longitude) or sensor data structure.

pt c(latitude, longitude) of the centre point of the local level frame. If pt is not
given, the first point in the track will be used.

Value

A data frame with columns northing and easting of track points in the local level frame. Northing
and easting are in metres. The axes of the frame are true (geographic) north and true east.

46 load_nc

Note

This function assumes the track is on the surface of the geoid, and also uses a simple spherical
model for the geoid. For more accurate conversion to a Cartesian frame, use spatial and mapping
packages in Matlab/Octave.

Examples

coordinates <- matrix(c(
-122.4194, 37.7749,
-73.9352, 40.7306), nrow = 2, ncol = 2, byrow = TRUE)
lalo2llf(coordinates, c(15,19))

load_nc Load a tag dataset from a netCDF file.

Description

This function loads a tag dataset from a netCDF file (this is an archival file format supported by the
tagtools package and suitable for submission to online data archives).

Usage

load_nc(file, which_vars = NULL)

Arguments

file File name (and path, if necessary) of netCDF file to be read, as a quoted charac-
ter string.

which_vars (Optional) A list of quoted character strings giving the exact names of variables
to be read in. Default is to read all variables present in the file. parameters
should be read in.

Value

An animaltag object (a list) containing sensor and metadata structures. The item names in X will
be the same as the names of the variables in the NetCDF file (plus an "info" one), e.g., if the file
contains A and P, output object X will have fields XA, XP and X$info (the file metadata).

Examples

hold <- system.file("extdata","beaked_whale.nc", package = "tagtools", mustWork = TRUE)
load_nc(hold)

m2h 47

m2h Heading from accelerometer and magnetometer data

Description

This function is used to compute the heading, field intensity, and the inclination angle by gimballing
the magnetic field measurement matrix with the pitch and roll estimated from the accelerometer
matrix.

Usage

m2h(M, A, sampling_rate = NULL, fc = NULL)

Arguments

M A sensor data structure or matrix, M = [mx,my,mz] in any consistent unit (e.g.,
in uT or Gauss) or magnetometer sensor list (e.g., from readtag.R).

A A sensor data structure or matrix with columns [ax ay az] or acceleration sensor
list (e.g., from readtag.R). Acceleration can be in any consistent unit, e.g., g or
m/s^2.

sampling_rate (optional) The sampling rate of the sensor data in Hz (samples per second).
This is only needed if filtering is required. If A and M are sensor data lists, then
sampling_rate is obtained from them.

fc (optional) The cut-off frequency of a low-pass filter to apply to A and M before
computing heading. The filter cut-off frequency is with in Hertz. The filter
length is 4*sampling_rate/fc. Filtering adds no group delay. If fc is not specified,
no filtering is performed.

Value

A list with 3 elements:

• h: The heading in radians in the same frame as M. The heading is with respect to magnetic
north (i.e., the north vector of the navigation frame) and so must be corrected for declination.

• v: The estimated magnetic field intensity in the same units as M. This is computed by taking
the 2-norm of M, after filtering (if any filtering was specified).

• incl: The estimated magnetic field inclination angle (i.e., the angle with respect to the hori-
zontal plane) in radians. By convention, a field vector pointing below the horizon has a positive
inclination angle. See note in the function if using incl.

Note

Output sampling rate is the same as the input sampling rate (i.e. h, v, and incl are estimated with
the same sampling rate as M and A and so are each nx1 vectors).

48 make_info

Frame: This function assumes a [north,east,up] navigation frame and a [forward,right,up] local
frame. North and east are magnetic, not true. In these frames a positive heading is a clockwise
rotation around the z-axis.

The heading is computed with respect to the frame of M and is the magnetic heading NOT the true
heading. M and A must have the same sampling rate, frame, and number of rows.

See Also

a2pr

Examples

m2h_out <- m2h(M = matrix(c(22, -24, 14), nrow = 1),
A = matrix(c(-0.3, 0.52, 0.8), nrow = 1))

make_info Make an info structure with tag metadata

Description

This function allows the user to generate a "skeleton" info structure for a tag deployment, with some
common pieces of metadata filled in. Additional information can then be added manually or using
a custom script before saving this info as part of a netCDF file.

Usage

make_info(depid, tagtype, species, owner)

Arguments

depid Deployment id string for this tag record

tagtype String identifying the tag type, for example ’dtag’, ’cats’, ’mk10’, ...

species (optional) 2-letter string with the first letters of the species binomial

owner (optional) String with initials of the tag data owner

Value

A list containing metadata for a tag deployment. It’s recommended to name this output "info" and
save it as part of a netCDF tag data archive file (along with the tag sensor data).

Examples

info <- make_info("d4_template", "dtag4", "zc", "sdr")

make_specgram 49

make_specgram Plot a spectrogram with default settings

Description

This is a wrapper function for specgram to draw a spectrogram with the same input argument names
and defaults as the tag tools Matlab/Octave function make_specgram.

Usage

make_specgram(
x,
nfft = 256,
fs = 2,
window = signal::hanning(nfft),
noverlap = length(window)/2,
draw_plot = TRUE

)

Arguments

x The input signal

nfft specifies the number of frequency points used to calculate the discrete Fourier
transforms.

fs The sampling frequency in Hz

window If you specify a scalar for window, make_specgram uses a Hanning window of
that length. window must have length smaller than or equal to nfft and greater
than noverlap.

noverlap The number of samples the sections of x overlap.

draw_plot (logical) Should a plot be drawn? Defaults to TRUE.

Value

if draw_plot is TRUE, a plot is produced. If it is FALSE, a list is returned, with as follows. Each
element is a matrix and all three matrices are the same size.

• s, A matrix of spectrogram values of signal x in dB.

• f, Frequencies (Hz) corresponding to the rows of s

• t, Time indices corresponding to the columns of s

50 mean_absorption

Examples

x <- signal::chirp(seq(from = 0, by = 0.001, to = 2),
f0 = 0,
t1 = 2,
f1 = 500

)
fs <- 2
nfft <- 256
numoverlap <- 128
window <- signal::hanning(nfft)
S <- make_specgram(x, nfft, fs, window, numoverlap, draw_plot = FALSE)

mean_absorption Calculate the mean absorption in salt water

Description

This function is used to calculate the mean absorption in salt water over a frequency range.

Usage

mean_absorption(freq, r, depth, Ttab = NULL)

Arguments

freq Specifies the frequency range, freq = c(fmin, fmax) in Hz. For a single fre-
quency, use a scalar value for freq.

r The path (slant) length in metres.

depth The depths covered by the path. This can be a single value for a horizontal path
or a two component vector i.e., depth = c(dmax, dmin) for a path that extends
between two depths.

Ttab (optional) The temperature (a scalar) in degrees C or specifies a temperature
profile Ttab = c(depth, tempr) where depth and tempr are equal-sized column
vectors. Default value is an isothermal profile of 13 degrees.

Value

The mean sound absorption over the path in dB.

Note

After Kinsler and Frey pp. 159-160.

Examples

mean_absorption(c(25e3, 60e3), 1000, c(0, 700))

median_filter 51

median_filter Computes the nth-order median filter

Description

This function computes the nth-order median filter each column of X. The filter output is the median
of each consecutive group of n samples. This is useful for removing occasional outliers in data that
is otherwise fairly smooth. This makes it appropriate for pressure, temperature and magnetometer
data (amongst other sensors) but not so suitable for acceleration which can be highly dynamic. The
filter does not introduce delay. The start and end values, i.e., within n samples of the start or end of
the input data, are computed with decreasing order median filters unless noend = TRUE. If noend =
TRUE, start and end values are taken directly from X without short median filters.

Usage

median_filter(X, n, noend = TRUE)

Arguments

X A sensor list or a vector or matrix. If there are multiple columns in the data,
each column is treated as a separate signal to be filtered.

n The filter length. If an even n is given, it is automatically incremented to make it
odd. This ensures that the median is well-defined (the median of an even length
vector is usually defined as the mean of the middle two points but may differ in
different programmes). Note that a short n (e.g., 3 or 5) is usually sufficient and
that processing will be very slow if n is large.

noend If TRUE (the default), then start and end values are taken directly from X with-
out short median filters.

Value

The output of the filter. It has the same size as S and has the same sampling rate and units as X. If
X is a sensor list, the return will also be.

Examples

v <- matrix(c(1, 3, 4, 4, 20, -10, 5, 6, 6, 7), ncol = 1)
w <- median_filter(v, n = 3)

52 metadata_editor

merge_fields Merge the fields of two lists

Description

This function is used to merge the fields of two lists. If there are duplicate fields, the fields in s1 are
taken.

Usage

merge_fields(s1, s2)

Arguments

s1 Arbitrary list e.g., containing metadata or settings.

s2 Arbitrary list e.g., containing metadata or settings.

Value

A list containing all of the fields in s1 and s2

Examples

s1 <- list(a = 1, b = c(2, 3, 4))
s2 <- list(b = 3, c = "cat")
s <- merge_fields(s1, s2)

metadata_editor Edits a html file from given csv.

Description

Takes data from csv, and edits a default or given html to fill in data from the csv. HTML must be
tagmetadata.html or variations, csv should only contain metadata of tag.

Usage

metadata_editor(
masterHTML = system.file("extdata", "tagmetadata.html", package = "tagtools"),
csvfilename = system.file("extdata", "blank_template.csv", package = "tagtools")

)

Arguments

masterHTML default masterHTML is located in the package, or can be changed according to
user input.

csvfilename file name of csv to be used for editing the HTML

msa 53

Value

A "dynamic tagmetadata.html" which is the masterHTML with changes from csv. This file is written
to the current working directory, and also opened for editing by the user.

msa Compute MSA

Description

This function is used to compute the Minimum Specific Acceleration (MSA). This is the absolute
value of the norm of the acceleration minus 1 g, i.e., the amount that the acceleration differs from
the gravity value. This is always equal to or less than the actual specific acceleration if A is correctly
calibrated.

Usage

msa(A, ref)

Arguments

A An nx3 acceleration matrix with columns [ax ay az], or a tag sensor data list
containing acceleration data. Acceleration can be in any consistent unit, e.g., g
or m/s^2. A can be in any frame as the MSA is rotation independent.

ref The gravitational field strength in the same units as A. This is not needed if A is
a sensor structure. If A is a matrix, the default value is 9.81 which assumes that
A is in m/s^2. Use ref = 1 if the unit of A is g.

Details

Possible input combinations: msa(A) if A is a list, msa(A,ref) if A is a matrix.

Value

A column vector of MSA with the same number of rows as A, or a tag sensor data list (output
matches input). m has the same units as A.

Note

See Simon et al. (2012) Journal of Experimental Biology, 215:3786-3798.

See Also

odba, njerk

54 m_dist

Examples

sampleMatrix <- matrix(c(1, -0.5, 0.1, 0.8, -0.2, 0.6, 0.5, -0.9, -0.7),
byrow = TRUE, nrow = 3, ncol = 3

)
msa(A = sampleMatrix, ref = 1)

m_dist Calculate Mahalanobis distance

Description

This function is used to calculate the Mahalanobis distance for a multivariate time series.

Usage

m_dist(
data,
sampling_rate,
smoothDur,
overlap,
consec,
cumSum,
expStart,
expEnd,
baselineStart,
baselineEnd,
BL_COV

)

Arguments

data A data frame or matrix with one row for each time point. Note that the Ma-
halanobis distance calculation should be carried out on continuous data only,
so if your data contain logical, factor or character data, proceed at your own
risk...errors (or at least meaningless results) will probably ensue.

sampling_rate The sampling rate in Hz (data should be regularly sampled). If not specified it
will be assumed to be 1 Hz.

smoothDur The length, in minutes, of the window to use for calculation of "comparison"
values. If not specified or zero, there will be no smoothing (a distance will be
calculated for each data observation).

overlap The amount of overlap, in minutes, between consecutive "comparison" win-
dows. smooth_dur - overlap will give the time resolution of the resulting dis-
tance time series. If not specified or zero, there will be no overlap. Overlap will
also be set to zero if smoothDur is unspecified or zero.

njerk 55

consec Logical. If consec = TRUE, then the calculated distances are between consecu-
tive windows of duration smoothDur, sliding forward over the data set by a time
step of (smoothDur-overlap) minutes. If TRUE, baselineStart and baselineEnd
inputs will be used to define the period used to calculate the data covariance
matrix. Default is consec = FALSE.

cumSum Logical. If cum_sum = TRUE, then output will be the cumulative sum of the
calculated distances, rather than the distances themselves. Default is cum_sum
= FALSE.

expStart Start times (in seconds since start of the data set) of the experimental exposure
period(s).

expEnd End times (in seconds since start of the data set) of the experimental exposure
period(s). If either or both of exp_start and exp_end are missing, the distance
will be calculated over whole dataset and full dataset will be assumed to be
baseline.

baselineStart Start time (in seconds since start of the data set) of the baseline period (the mean
data values for this period will be used as the ’control’ to which all "comparison"
data points (or windows) will be compared. if not specified, it will be assumed
to be 0 (start of record).

baselineEnd End time (in seconds since start of the data set) of the baseline period. If not
specified, the entire data set will be used (baseline_end will be the last sampled
time-point in the data set).

BL_COV Logical. If BL_COV= TRUE, then a covariance matrix using all data in base-
line period will be used for calculating the Mahalanobis distance. Default is
BL_COV = FALSE.

Value

Data frame containing results: variable seconds is times in seconds since start of dataset, at which
Mahalanobis distances are reported. If a smoothDur was applied, then the reported times will be
the start times of each "comparison" window. Variable dist is the Mahalanobis distances between
the specified baseline period and the specified "comparison" periods.

Examples

BW <- beaked_whale
m_dist_result <- m_dist(BWAdata, BWAsampling_rate)

njerk Compute the norm-jerk

Description

This function is used to compute the norm-jerk from triaxial acceleration data.

56 norm2

Usage

njerk(A, sampling_rate)

Arguments

A A tag sensor data list or a nx3 acceleration matrix with columns [ax ay az].
Acceleration can be in any consistent unit, e.g., g or m/s^2. A can be in any
frame as the norm-jerk is rotation independent. A must have at least 2 rows (i.e.,
n>=2).

sampling_rate The sampling rate in Hz of the acceleration signals. This is used to estimate the
differential by a first-order difference.

Value

The norm-jerk from triaxial acceleration data in the form of a column vector with the same number
of rows as in A, or a tag sensor data structure (if the input A was one). The norm-jerk is ||dA/dt||,
where ||x|| is the 2-norm of x, i.e., the square-root of the sum of the squares of each axis. If the unit
of A is m/s^2, the norm-jerk has unit m/s^3. If the unit of A is g, the norm-jerk has unit g/s. As j is
the norm of the jerk, it is always positive or zero (if the acceleration is constant). The final value in
j is always 0 because the last finite difference cannot be calculated.

See Also

msa, odba

Examples

sampleMatrix <- matrix(c(1, 2, 3, 2, 2, 4, 1, -2, 4, 4, 4, 4), byrow = TRUE, nrow = 4, ncol = 3)
norm_jerk <- njerk(A = sampleMatrix, sampling_rate = 5)

norm2 Compute the row-wise vector norm

Description

This function is used to compute the row-wise vector norm of X if X is a matrix. If X is a vector
(row or column), v is the vector norm.

Usage

norm2(X)

Arguments

X A data structure, vector or matrix.

ocdr 57

Value

The row-wise vector-norm of matrix X, i.e., the square-root of the sum of the squares for each row.
If X is a vector (row or column), v is the vector norm and norm2() is equivalent to the built-in
function norm(). But if X is a matrix e.g., a triaxial accelerometer or magnetometer matrix, norm()
gives the overall norm of the matrix whereas norm2() gives the vector norm of each row (i.e., the
field strength in the case of a magnetometer matrix).

Examples

sampleMatrix <- matrix(c(0.2, 0.4, -0.7, -0.3, 1.1, 0.1), byrow = TRUE, nrow = 2, ncol = 3)
norm2(X = sampleMatrix)

ocdr Estimate the forward speed

Description

This function is used to estimate the forward speed of a flying or diving animal by first computing
the altitude or depth-rate (i.e., the first differential of the pressure in meters) and then correcting
for the pitch angle. This is called the Orientation Corrected Depth Rate. There are two major
assumptions in this method: (i) the animal moves in the direction of its longitudinal axis, and (ii)
the frame of A coincides with the animal’s axes.

Usage

ocdr(p, A, sampling_rate, fc, plim)

Arguments

p The depth or altitude vector (a regularly sampled time series) or depth or altitude
sensors list in meters, sampled at sampling_rate Hz.

A The nx3 acceleration matrix with columns [ax ay az] or acceleration sensor list
(e.g., from readtag.R). Acceleration can be in any consistent unit, e.g., g or
m/s^2. A must have the same number of rows as p.

sampling_rate The sampling rate of p and A in Hz (samples per second).

fc (optional) Specifies the cut-off frequency of a low-pass filter to apply to p after
computing depth-rate and to A before computing pitch. The filter cut-off fre-
quency is in Hz. The filter length is 4*sampling_rate/fc. Filtering adds no group
delay. If fc is empty or not given, the default value of 0.2 Hz (i.e., a 5 second
time constant) is used.

plim (optional) Specifies the minimum pitch angle in radians at which speed can be
computed. Errors in speed estimation using this method increase strongly at low
pitch angles. To avoid estimates with poor accuracy being used in later analyses,
speed estimates at low pitch angles are replaced by NaN (not-a-number). The
default threshold for this is 20 degrees.

58 odba

Details

Possible input combinations: ocdr(p,A) if p and A are lists, ocdr(p,A,fc = fc) if p and A are lists,
ocdr(p,A,fc = fc,plim = plim) if p and A are lists, ocdr(p,A,sampling_rate) if p and A are vec-
tors/matrices, ocdr(p,A,sampling_rate,fc) if p and A are vectors/matrices, ocdr(p,A,sampling_rate,fc,plim)
if p and A are vectors/matrices.

Value

The forward speed estimate in m/s

Note

Output sampling rate is the same as the input sampling rate so s has the same size as p.

Frame: This function assumes a [north,east,up] navigation frame and a [forward,right,up] local
frame. In these frames, a positive pitch angle is an anti-clockwise rotation around the y-axis. A
descending animal will have a negative pitch angle.

Examples

HS <- harbor_seal
s <- ocdr(p = HSPdata, A = HSAdata, sampling_rate = HSPsampling_rate, fc = NULL, plim = NULL)
speed <- list(s = s)
plott_base(speed, HSPsampling_rate)

odba Compute ODBA

Description

This function is used to compute the ’Overall Dynamic Body Acceleration’ sensu Wilson et al.
2006. ODBA is the norm of the high-pass-filtered acceleration. Several methods for computing
ODBA are in use which differ by which norm and which filter are used. In the Wilson paper, the 1-
norm and a rectangular window (moving average) filter are used. The moving average is subtracted
from the input accelerations to implement a high-pass filter. The 2-norm may be preferable if the tag
orientation is unknown or may change and this is termed VeDBA. A tapered symmetric FIR filter
gives more efficient high-pass filtering compared to the rectangular window method and avoids
lobes in the response.

Usage

odba(A, sampling_rate = NULL, fh = NULL, method = "fir", n = NULL)

plott 59

Arguments

A A tag sensor data list containing tri-axial acceleration data or an nx3 acceleration
matrix with columns [ax ay az]. Acceleration can be in any consistent unit,
e.g., g or m/s^2. A can be in any frame but the result depends on the method
used to compute ODBA. The default method and VeDBA method are rotation
independent and so give the same result irrespective of the frame of A. The
1-norm method has a more complex dependency on frame.

sampling_rate The sampling rate in Hz of the acceleration signals. Required for ’fir’ method if
A is not a tag sensor data list.

fh The high-pass filter cut-off frequency in Hz. This should be chosen to be about
half of the stroking rate for the animal (e.g., using dsf.R). Required for the de-
fault ’fir’ method.

method A character containing either ’wilson’ or ’vedba’ or ’fir’. This determines the
method by which the ODBA is calculated. The default method is ’fir’.

n The rectangular window (moving average) length in samples. This is only
needed if using the classic ODBA and VeDBA forms (methods ’wilson’ and
’vedba’).

Value

A column vector of ODBA with the same number of rows as A. e has the same units as A.

Note

If applying the default (FIR filtering) method to calculate odba, use the inputs A, sampling_rate,
and fh. When applying the ’vedba’ or ’wilson’ method, use the inputs A, n, and method.

Examples

BW <- beaked_whale
e <- odba(A = BWAdata, sampling_rate = BWAsampling_rate, fh = 0.05)
ba <- list(e = e)
plott_base(ba, BWAsampling_rate)

plott Plot tag data time series

Description

Plot time series in a single or multi-paneled figure, using ggplot2 graphics for static graphs and
plotly for interactive ones. This is useful, for example, for comparing measurements across different
sensors in an animaltag data object. The time axis is automatically displayed in seconds, minutes,
hours, or days according to the span of the data.

60 plott

Usage

plott(
X,
fsx = NULL,
r = FALSE,
offset = 0,
date_time_axis = FALSE,
recording_start = NULL,
panel_heights = rep.int(1, length(X))/length(X),
panel_labels = names(X),
line_colors,
interactive = FALSE,
draw = TRUE

)

Arguments

X List whose elements are either lists (containing data and metadata) or vectors/matrices
of time series data. See details.

fsx (Optional) A numeric vector whose length matches the number of sensor data
streams (list elements) in X. (If shorter, fsx will be recycled to the appropriate
length). fsx gives the sampling rate in Hz for each data object. Sampling rates
are not needed when the data object(s) X are list(s) that contain sampling rate
information – and beware, because fsx (if given) will override sensor metadata.

r (Optional) Logical. Should the direction of the y-axis be flipped? Default is
FALSE. If r is of length one (or shorter than the number of sensor data streams
in X) it will be recycled to match the number of sensor data streams. Reversed y-
axes are useful, for example, for plotting dive profiles which match the physical
situation (with greater depths lower in the display). If the name of a sensor list
is "P" or contains the word "depth", it will automatically be reversed.

offset (Optional) A vector of offsets, in seconds, between the start of each sensor data
stream and the start of the first one. For example, if acceleration data collection
started and then depth data collection commenced 436 seconds later, then the
offset for the depth data would be 436.

date_time_axis (Optional) Logical. Should the x-axis units be date-times rather than time-since-
start-of-recording? Ignored if recording_start is not provided and X does not
contain metadata on recording start time. Default is FALSE.

recording_start

(Optional) The start time of the tag recording as a POSIXct object. If provided,
the time axis will show calendar date/times; if not, it will show days/hours/minutes/seconds
(as appropriate) since time 0 = the start of recording. If a character string is pro-
vided it will be coerced to POSIXct with as.POSIXct.

panel_heights (Optional) A vector of relative or absolute heights for the different panels (one
entry for each sensor data stream in X). Default is equal-height panels. If panel_heights
is a numeric vector, it is interpreted as relative panel heights.

panel_labels (Optional) A list of y-axis labels for the panels. Defaults to names(X).

plott_base 61

line_colors (Optional) A list of colors for lines for multivariate data streams (for example,
if a panel plots tri-axial acceleration, it will have three lines – their line colors
will be the first three in this list). May be specified in any specification R under-
stands for colors. Defaults to c("#000000", "#009E73", "#9ad0f3", "#0072B2",
"#e79f00", "#D55E00")

interactive (Optional) Should an interactive figure (allowing zoom/pan/etc.) be produced?
Default is FALSE. Interactive plotting requires the package plotly.

draw (Optional) Whether or not to draw the plot. Defaults to TRUE. If FALSE, a
list of ggplot objects (if interactive is FALSE; this list is suitable to plot with
cowplot::plot_grid()) or a list of plotly objects (if interactive is TRUE) will
be returned. This may be useful if you wish to further customize the plot panels,
for example adding detected events atop the dive profile.

Details

If the input data X is an animaltag object, then all sensor variables in the object will be plot-
ted. To plot only selected sensors from the animaltag object my_tag, for example, the input
X=list(my_tagA, my_tagM) would plot just the accelerometer and magnetometer data. If possi-
ble, the plot will have

Value

A plot of time-series data created with ggplot or plotly. If you prefer base R graphics, consider
function plott_base instead.

Note

This is a flexible plotting tool which can be used to display and explore sensor data with different
sampling rates on a uniform time grid.

Examples

plott(list(depth = harbor_seal$P, Accel = harbor_seal$A))

plott_base Plot tag data time series

Description

Plot time series in a single or multi-paneled figure, using base R graphics. This is useful, for
example, for comparing measurements across different sensors in an animaltag data object. The
time axis is automatically displayed in seconds, minutes, hours, or days according to the span of the
data.

62 plott_base

Usage

plott_base(
X,
fsx = NULL,
r = FALSE,
offset = 0,
date_time_axis = FALSE,
recording_start = NULL,
panel_heights = rep.int(1, length(X)),
panel_labels = names(X),
line_colors,
interactive = FALSE,
par_opts,
...

)

Arguments

X List whose elements are either lists (containing data and metadata) or vectors/matrices
of time series data. See details.

fsx (Optional) A numeric vector whose length matches the number of sensor data
streams (list elements) in X. (If shorter, fsx will be recycled to the appropriate
length). fsx gives the sampling rate in Hz for each data object. Sampling rates
are not needed when the data object(s) X are list(s) that contain sampling rate
information – and beware, because fsx (if given) will override sensor metadata.

r (Optional) Logical. Should the direction of the y-axis be flipped? Default is
FALSE. If r is of length one (or shorter than the number of sensor data streams
in X) it will be recycled to match the number of sensor data streams. Reversed y-
axes are useful, for example, for plotting dive profiles which match the physical
situation (with greater depths lower in the display). If the name of a sensor list
is "P" or contains the word "depth", it will automatically be reversed.

offset (Optional) A vector of offsets, in seconds, between the start of each sensor data
stream and the start of the first one. For example, if acceleration data collection
started and then depth data collection commenced 436 seconds later, then the
offset for the depth data would be 436.

date_time_axis (Optional) Logical. Should the x-axis units be date-times rather than time-since-
start-of-recording? Ignored if recording_start is not provided and X does not
contain metadata on recording start time. Default is FALSE.

recording_start

(Optional) The start time of the tag recording as a POSIXct object. If provided,
the time axis will show calendar date/times; if not, it will show days/hours/minutes/seconds
(as appropriate) since time 0 = the start of recording. If a character string is pro-
vided it will be coerced to POSIXct with as.POSIXct.

panel_heights (Optional) A vector of relative or absolute heights for the different panels (one
entry for each sensor data stream in X). Default is equal-height panels. If panel_heights
is a numeric vector, it is interpreted as relative panel heights. To specify absolute
panel heights in centimeters using lcm (see help for layout).

plott_static_panel 63

panel_labels (Optional) A list of y-axis labels for the panels. Defaults to names(X).

line_colors (Optional) A list of colors for lines for multivariate data streams (for example,
if a panel plots tri-axial acceleration, it will have three lines – their line colors
will be the first three in this list). May be specified in any specification R under-
stands for colors. Defaults to c("#000000", "#009E73", "#9ad0f3", "#0072B2",
"#e79f00", "#D55E00")

interactive (Optional) Should an interactive figure (allowing zoom/pan/etc.) be produced?
Default is FALSE. Interactive plotting requires the zoom package for its zm func-
tion.

par_opts (Optional) A list of options to be passed to par before plotting. Default is
mar=c(1,5,0,0), oma=c(2,0,2,1), las=1, lwd=1, cex=0.8.

... Additional arguments to be passed to plot.

Details

If the input data X is an animaltag object, then all sensor variables in the object will be plot-
ted. To plot only selected sensors from the animaltag object my_tag, for example, the input
X=list(my_tagA, my_tagM) would plot just the accelerometer and magnetometer data. If possi-
ble, the plot will have

Value

A plot of time-series data

Note

This is a flexible plotting tool which can be used to display and explore sensor data with different
sampling rates on a uniform time grid.

Examples

plott_base(list(depth = harbor_seal$P, Accel = harbor_seal$A))

plott_static_panel Helper function for plott

Description

This internal function helpsplott produce the individual panels that make up the static ggplot
output. It will not usually be needed by users.

64 prh_predictor1

Usage

plott_static_panel(
sensor,
sensor_data,
line_colors,
panel_labels,
axis_names = c("X", "Y", "Z"),
times,
x_lab,
r

)

Arguments

sensor Which sensor to plot

sensor_data List whose elements are either lists (containing data and metadata) or vectors/matrices
of time series data. See details.

line_colors Vector of colors to use for lines

panel_labels Labels for each panel (sensor)

axis_names Names for different axes for sensors with more than one (for example: X, Y, Z)

times List of vectors of times for the x axis of each panel (one list element per panel)

x_lab Title for x axis (string)

r whether or not to reverse the y axis scale for each sensor

Value

A ggplot for "one panel," that is, with the data from one sensor

prh_predictor1 Predict the tag position on a diving animal from depth and accelera-
tion data

Description

Predict the tag position on a diving animal parameterized by p0, r0, and h0, the canonical angles
between the principal axes of the tag and the animal. The tag orientation on the animal can change
with time and this function provides a way to estimate the orientation at the start and end of each
suitable dive. The function critically assumes that the animal rests horizontally at the surface (at
least on average) and dives steeply away from the surface without an initial roll. If ascents are
processed, there must also be no roll in the last seconds of the ascents. See prh_predictor2 for a
method more suitable to animals that make short dives between respirations. The function provides
a graphical interface showing the estimated tag-to-animal orientation throughout the deployment.
Follow the directions above the top panel of the figure to edit or delete an orientation estimate.

prh_predictor2 65

Usage

prh_predictor1(P, A, sampling_rate = NULL, TH = 100, DIR = "descent")

Arguments

P is a dive depth vector or sensor structure with units of m H2O.

A is an acceleration matrix or sensor structure with columns ax, ay, and az. Accel-
eration can be in any consistent unit, e.g., g or m/s^2, and must have the same
sampling rate as P.

sampling_rate is the sampling rate of the sensor data in Hz (samples per second). This is only
needed if neither A nor M are sensor structures.

TH is an optional minimum dive depth threshold (default is 100m). Only the de-
scents at the start of dives deeper than TH will be analysed (and the ascents at
the end of dives deeper than TH if ALL is true).

DIR is an optional dive direction constraint. The default (DIR = ’descent’) is to only
analyse descents as these tend to give better results. But if DIR = ’both’, both
descents and ascents are analysed.

Value

PRH, a data frame with columns cue p0, r0, h0, and q with a row for each dive edge analysed.
cue is the time in second-since-tag-start of the dive edge analysed. p0, r0, and h0 are the deduced
tag orientation angles in radians. q is the quality indicator with a low value (near 0, e.g., <0.05)
indicating that the data fit more consistently with the assumptions of the method.

See Also

prh_predictor2, tag2animal

prh_predictor2 Predict the tag position on a diving animal from depth and accelera-
tion data

Description

Predict the tag position on a diving animal parametrized by p0, r0, and h0, the canonical angles
between the principal axes of the tag and the animal. The tag orientation on the animal can change
with time and this function provides a way to estimate the orientation at the start and end of each
suitable dive. The function critically assumes that the animal makes a sequence of short dives be-
tween respirations and that the animal remains upright (i.e., does not roll) during these shallow
dives. See prh_predictor1 for a method more suitable to animals that rest horizontally at the sur-
face. The function provides a graphical interface showing the estimated tag-to-animal orientation
throughout the deployment. Follow the directions above the top panel of the figure to edit or delete
an orientation estimate. The function provides a graphical interface showing the estimated tag-to-
animal orientation throughout the deployment. Follow the directions above the top panel of the
figure to edit or delete an orientation estimate.

66 ptrack

Usage

prh_predictor2(P, A, sampling_rate = NULL, MAXD = 10)

Arguments

P is a dive depth vector or sensor structure with units of m H2O.

A is an acceleration matrix or sensor structure with columns ax, ay, and az. Accel-
eration can be in any consistent unit, e.g., g or m/s^2, and must have the same
sampling rate as P.

sampling_rate is the sampling rate of the sensor data in Hz (samples per second). This is only
needed if neither A nor M are sensor structures.

MAXD is the optional maximum depth of near-surface dives. The default value is 10 m.
This is used to find contiguous surface intervals suitable for analysis.

Value

PRH, a data frame with columns cue p0, r0, h0, and q with a row for each dive edge analysed.
cue is the time in second-since-tag-start of the dive edge analysed. p0, r0, and h0 are the deduced
tag orientation angles in radians. q is the quality indicator with a low value (near 0, e.g., <0.05)
indicating that the data fit more consistently with the assumptions of the method.

See Also

prh_predictor1, tag2animal

ptrack Estimate simple dead-reckoned track

Description

This function is used to estimate the simple dead-reckoned track (pseudo-track) based on speed and
bodypointing angle.

Usage

ptrack(A, M, s, sampling_rate = NULL, fc = 0.2, return_pe = FALSE)

Arguments

A An nx3 acceleration matrix with columns [ax ay az] or acceleration sensor list.
Acceleration can be in any consistent unit, e.g., g or m/s^2.

M The magnetometer signal matrix, M = [mx,my,mz] in any consistent unit (e.g.,
in uT or Gauss) or magnetometer sensor list. A and M must have the same size
(and so are both measured at the same sampling rate).

ptrack 67

s The forward speed of the animal in m/s. s can be a single number meaning that
the animal is assumed to travel at a constant speed. s can also be a vector with
the same number of rows as A and M, e.g., generated by speed_from_depth().

sampling_rate The sampling rate of the sensor data in Hz (samples per second). This input will
be ignored if A and/or M are sensor lists, in which case the sampling rate will
be extracted from them.

fc (optional) The cut-off frequency of a low-pass filter to apply to A and M before
computing bodypointing angle. The filter cut-off frequency is in Hz. The filter
length is 4*sampling_rate/fc. Filtering adds no group delay. If fc is empty or
not given, the default value of 0.2 Hz (i.e., a 5 second time constant) is used.

return_pe Logical. If return_pe is TRUE, the estimated depth or altitude predicted will be
returned with the estimated track. Default is FALSE.

Value

The estimated track in a local level frame. The track is defined as meters of northward and eastward
movement (variables ’northing’ and ’easting’ in the output data frame) relative to the animal’s
position at the start of the measurements (which is defined as [0,0]). The track sampling rate is
the same as for the input data and so each row of track object defines the track coordinates at
times 0,1/sampling_rate,2/sampling_rate,... relative to the start time of the measurements. OR,
if return_pe = TRUE, this function returns the above value and the estimated depth or altitude
predicted from the speed and pitch angle. This can be compared against the measured depth/altitude
to assess errors in the dead-reckoned track. Note that even if pe matches the observed depth, this
does not guarantee that the track is accurate.

Note

Frame: This function assumes a [north,east,up] navigation frame and a [forward,right,up] local
frame. Both A and M must be rotated if needed to match the animal’s cardinal axes otherwise the
track will not be meaningful.

CAUTION: dead-reckoned tracks are usually very inaccurate. They are useful to get an idea of
HOW animals move rather than WHERE they go. Few animals probably travel in exactly the
direction of their longitudinal axis and anyway measuring the precise orientation of the longitudinal
axis of a non-rigid animal is fraught with error. Moreover, if there is net flow in the medium, the
animal will be affected by the flow in addition to its autonomous movement. For swimming animals
this can lead to substantial errors. The forward speed is assumed to be with respect to the medium so
the track derived here is NOT the ’track-made-good’, i.e., the geographic movement of the animal.
It estimates the movement of the animal with respect to the medium. There are numerous other
sources of error so use at your own risk!

See Also

htrack, fit_tracks, track3D

Examples

BW <- beaked_whale
list <- ptrack(A = BWAdata, M = BWMdata, s = 3,

68 read_cats

sampling_rate = BWAsampling_rate, fc = NULL,
return_pe = TRUE)
plot(list$track$easting, list$track$northing, xlab = "Easting, m", ylab = "Northing, m")

read_cats Read a CATS data file and convert to .nc

Description

Read a .csv file with data from a CATS tag deployment, including associated metadata, and store
the resulting data in a .nc file.

Usage

read_cats(fname, depid)

Arguments

fname is the file name of the CATS CSV file including the complete path name if the
file is not in the current working directory or in a directory on the path. The .csv
suffix is optional.

depid is a string containing the deployment identification code assigned to this deploy-
ment, for example, ’mn12_186a’.

Value

A string (constructed by: ’depid_raw.nc’; for example, ’mn12_186a_raw.nc’) containing the file
name of the netCDF (.nc) file in which the output has been saved. This function generates a netCDF
file in the current working directory containing the tag data variables, including:

• A, Accelerometer data structure

• M, Magnetometer data structure

• temp, Temperature sensor data structure

• info Information structure for the deployment

Note

CATS loggers can produce very large csv files which are slow to process. This function is (some-
what) optimised for speed and memory use so will tolerate large files. But processing could be
slow. Note also that although CATs tags use a NED axis orientation for 3D sensors, this function
converts to the NEU orientation expected by the animaltag tool kit. To revert (if continuing analysis
with CATs-specific tools outside animaltags), simply multiply all z-axis values by -1. Also note
that Cade et al. 2021 note that not all CATs tags have the same internal orientation of the triaxial
sensors – such that the first column in the data may or may not be the "x axis." Here, we assume
that the three columns of data for any triaxial sensor are correctly labeled with X,Y,Z included in
the column name in the CATs csv file. If not, further data-based bench calibration of the device
may be needed to determine correct axis orientation.

read_cats_csv 69

Examples

Not run:
nc_filename <- read_cats("my_cats_file.csv", "my_cats_deplyment_name")
load_nc("my_cats_deployment_name_raw.nc")

End(Not run)

read_cats_csv Read a CSV file with sensor data from a CATS tag

Description

Read in data from a CATS tag deployment (stored in a .csv file). This function is usable by itself
but is more normally called by read_cats which handles metadata and creates a NetCDF file.

Usage

read_cats_csv(fname, max_samps = Inf, skip_samps = 0)

Arguments

fname is the file name of the CATS CSV file including the complete path name if the
file is not in the current working directory or in a directory on the path. The .csv
suffix is optional.

max_samps is optional and is used to limit reading to a maximum number of samples (rows)
per sensor. This is useful to read in a part of a very large file for testing. If
max_samps is not given, the entire file is read.

skip_samps Number of lines of data to skip (excluding header) before starting to read in
data. Defaults to 0 (start at the beginning of the file), but can be used to read in
a part of a file, or to read in and process a large file in chunks.

Value

A tibble data frame containing the data read from the file. The column names are taken from the
first line of the CSV file and include units and axis. Some columns may be empty (if for example,
a tag did not record data from a certain sensor type).

Note

CATS csv files can be extremely large; perhaps too large to read the entire file into memory at once
and work with it.

70 rotate_data

rotate_data Rotate data.

Description

Rotate a numeric vector (for rotation_test, this will be a set of event times). "Rotating" the vector
entails advancing all values by a random increment, then subtracting the maximum expected value
from all rotated entries that exceed that maximum. This is a utility function used by rotation_test,
but advanced users may wish to use it directly to carry out non-standard rotation tests.

Usage

rotate_data(event_times, full_period)

Arguments

event_times A vector of the times of events. Times can be given in any format. If event_times
should not be sorted prior to analysis (for example, if times are given in hours
of the day and the times in the dataset span several days), be sure to specify
skip_sort=TRUE.

full_period A length two vector giving the start and end times of the full period during which
events in event_times might have occurred. If missing, default is range(event_times).

Details

The rotation test was applied in Miller et al. 2004 and detailed in DeRuiter and Solow 2008.
This test is a variation on standard randomization or permutation tests that is appropriate for time-
series of non-independent events (for example, time series of behavioral events that tend to occur
in clusters). This implementation of the rotation test compares a test statistic (some summary of
an "experimental" time-period) to its expected value during non-experimental periods. Instead of
resampling random subsets of observations from the original dataset, the rotation test samples many
contiguous blocks from the original data, each the same duration as the experimental period. The
summary statistic, computed for these "rotated" samples, provides a distribution to which the test
statistic from the data can be compared.

Value

A vector of numeric values the same length as event_times generated by rotating the event times
by a random amount

Examples

my_events <- 1500 * stats::runif(10) # 10 events at "times" between 0 and 1500
my_events
rotated_events <- rotate_data(my_events, full_period = c(0, 1500))
rotated_events

rotate_vecs 71

rotate_vecs Rotate triaxial vector measurements

Description

This function is used to rotate triaxial vector measurements from one frame to another.

Usage

rotate_vecs(V, Q)

Arguments

V is a tag data structure, a 3-element vector or a 3-column matrix of vector mea-
surements for example V could be from an accelerometer or magnetometer.

Q is the rotation matrix. If Q is a single 3x3 matrix, the same rotation is applied
to all vectors in V. If Q is a 3x3xn matrix where n is the number of rows in V, a
different transformation given by Q[„ k] is applied to each row of V.

Value

The rotated vector or matrix with the same size as the input V.

Note

Frame: This function makes no assumptions about frame.

Examples

x <- (pi / 180) * matrix(c(25, -60, 33), ncol = 3)
Q <- euler2rotmat(x[, 1], x[, 2], x[, 3])
V <- rotate_vecs(c(0.77, -0.6, -0.22), Q)

rotation_test Carry out a rotation randomization test.

Description

Carry out a rotation test (as applied in Miller et al. 2004 and detailed in DeRuiter and Solow 2008).
This test is a variation on standard randomization or permutation tests that is appropriate for time-
series of non-independent events (for example, time series of behavioral events that tend to occur in
clusters).

72 rotation_test

Usage

rotation_test(
event_times,
exp_period,
full_period = range(event_times, na.rm = TRUE),
n_rot = 10000,
ts_fun = length,
skip_sort = FALSE,
conf_level = 0.95,
return_rot_stats = FALSE,
...

)

Arguments

event_times A vector of the times of events. Times can be given in any format. If event_times
should not be sorted prior to analysis (for example, if times are given in hours
of the day and the times in the dataset span several days), be sure to specify
skip_sort=TRUE.

exp_period A two-column vector, matrix, or data frame specifying the start and end times of
the "experimental" period for the test. If a matrix or data frame is provided, one
column should be start time(s) and the other end time(s). Note that all data that
falls into any experimental period will be concatenated and passed to ts_fun.
If finer control is desired, consider writing your own test using the underlying
function rotate_data.

full_period A length two vector giving the start and end times of the full period during which
events in event_times might have occurred. If missing, default is range(event_times).

n_rot Number of rotations (randomizations) to carry out. Default is n_rot=10000.

ts_fun A function to compute the test statistic. Input provided to this function will be
the times of events that occur during the "experimental" period. The default
function is length - in other words, the default test statistic is the number of
events that happen during the experimental period.

skip_sort Logical. Should times be sorted in ascending order? Default is skip_sort=FALSE.

conf_level Confidence level to be used for the bootstrap CI calculation, specified as a pro-
portion. (default is conf_level=0.95, or 95% confidence.)

return_rot_stats

Logical. Should output include the test statistics computed for each rotation of
the data? Default is return_rot_stats=FALSE.

... Additional inputs to be passed to ts_fun

Details

This implementation of the rotation test compares a test statistic (some summary of an "experi-
mental" time-period) to its expected value during non-experimental periods. Instead of resampling
random subsets of observations from the original dataset, the rotation test samples many contiguous
blocks from the original data, each the same duration as the experimental period. The summary

rotmat2euler 73

statistic, computed for these "rotated" samples, provides a distribution to which the test statistic
from the data can be compared.

Value

A list containing the following components:

• result, A one-row data frame with rows:

– statistic: Test statistic (from original data)
– p_value: P-value of the test (2-sided)
– n_rot: Number of rotations
– CI_low: Lower bound on rotation-resampling percentile-based confidence interval
– CI_up: Upper bound on rotation-resampling percentile-based confidence interval
– conf_level: Confidence level, as a proportion

• rot_stats (If return_rot_stats is TRUE), a vector of n_rot statistics from the rotated
datasets

References

Miller, P. J. O., Shapiro, A. D., Tyack, P. L. and Solow, A. R. (2004). Call-type matching in vocal
exchanges of free-ranging resident killer whales, Orcinus orca. Anim. Behav. 67, 1099–1107.

DeRuiter, S. L. and Solow, A. R. (2008). A rotation test for behavioural point-process data. Anim.
Behav. 76, 1103–1452.

See Also

Advanced users seeking more flexibility may want to use the underlying function rotate_data
to carry out customized rotation resampling. rotate_data generates one rotated dataset from
event_times and exp_period.

Examples

r <- rotation_test(
event_times =
2000 * runif(500),

exp_period = c(100, 200),
return_rot_stats = TRUE, ts_fun = mean

)

rotmat2euler Decompose a rotation (or direction cosine) matrix

Description

This function is used to decompose a rotation (or direction cosine) matrix into Euler angles, pitch,
roll, and heading.

74 rough_cal_3d

Usage

rotmat2euler(Q)

Arguments

Q is a 3x3 rotation matrix.

Value

A 1x3 vector containing: prh=[p,r,h] where p is the pitch angle in radians, r is the roll angle in
radians, and h is the heading or yaw angle in radians.

Examples

set <- matrix(c(0.6765458, 0.7227523, 0.1411200,
0.3675912, -0.4975063, 0.7857252,
0.6380928, -0.4797047, -0.6022632), nrow = 3, ncol = 3)
rotmat2euler(set)

rough_cal_3d Estimate scale factors and offsets

Description

This function is used to estimate scale factors and offsets for measurements from a triaxial field
sensor. This function estimates the scale factor needed to make the magnitude of X close to the
expected field strength. It then calls fix_offset_3d to correct any offset errors in X. This function
does not try to optimize the results. See spherical_cal for a more powerful data-driven calibration
method.

Usage

rough_cal_3d(X, fstr)

Arguments

X A sensor structure or matrix containing measurements from a triaxial field sen-
sor such as an accelerometer or magnetometer. X can be in any units and frame.

fstr The expected field strength at the measurement location in the same units as X

Value

A list with 2 elements:

• X: A sensor structure or matrix containing the adjusted triaxial sensor measurements. It is the
same size and has the same sampling rate and units as the input data. If the input is a sensor
structure, the output will be also.

save_nc 75

• G: A list of calibration information containing one field: G$poly, a 3x2 matrix. Rows corre-
spond to X,Y,Z axes. with one column for each of the X, Y, Z axes. The first column of G$poly
contains scale factors and second column of G$poly is the offset added to each column of X
after scaling.

Note

This function requires a lot of data as it is looking for extreme values in each axis. A minimum data
size of 1000 samples should be used. This function is only usable for field sensors. It will not work
for gyroscope data.

Examples

BW <- beaked_whale
plot(x = c(1:length(BWMdata)), y = BWMdata)
rcal <- rough_cal_3d(BWMdata, fstr = 38.2)
cal <- list(x = c(1:length(rcal$X)), y = rcal$X)
plot(cal)

save_nc Save a tag dataset to a netCDF file.

Description

This function saves a tag dataset to a netCDF file (this is an archival file format supported by the
tagtools package and suitable for submission to online data archives).

Usage

save_nc(file, X, ...)

Arguments

file The name of the data and metadata file to be written. If file does not include a
.nc suffix, this will be added automatically.

X An animaltag object, or a list of tag sensor and/or metadata lists. Alternatively,
sensor and metadata lists may be input as multiple separate unnamed inputs.
Only these kind of variables can be saved in a NetCDF file because the support-
ing information in these structures is needed to describe the contents of the file.
For non-archive and non-portable storage of variables, consider using save or
various functions to write data to text files.

... Additional sensor or metadata lists, if user has not bundled them all into a list
already but is providing individual structures.

Details

Warning: this will overwrite any previous NetCDF file with the same name. The file is assumed to
be in the current working directory unless file includes file path information.

76 sens_struct

Value

no return; saves a dataset to an nc file

Examples

BW <- beaked_whale
save_nc("beaked_whale_test", BW)

sens_struct Generate a sensor structure from a sensor data vector or matrix.

Description

Generate a sensor structure from a sensor data vector or matrix.

Usage

sens_struct(
data,
sampling_rate = NULL,
times = NULL,
depid,
type,
unit = NULL,
frame = NULL,
name = NULL,
start_offset = 0,
start_offset_units = "second",
quiet = FALSE

)

Arguments

data sensor data vector or matrix

sampling_rate (optional) sensor data sampling rate in Hz

times (optional) is the time in seconds of each measurement in data for irregularly
sampled data. The time reference (i.e., the 0 time) should be with respect to the
start time of the deployment.

depid string that provides a unique identifier for this tag deployment

type is a string containing the first few letters of the sensor type, e.g., acc for acceler-
ation. These will be matched to the list of sensor names in the sensor_names.csv
file. If more than one sensor matches type, a warning will be given. type can be
in upper or lower case.

smooth 77

unit (optional) units in which data are sampled. Default determined by matching
type with defaults in sensor_names.csv

frame (optional) frame of reference for data axes, for example ’animal’ or ’tag’. De-
fault determined by matching type with defaults in sensor_names.csv.

name (optional) "full name" to assign to the variable. Default determined by matching
type to defaults in sensor_names.csv/

start_offset (optional) offset in start time for this sensor relative to start of tag recording.
Defaults to 0.

start_offset_units

(optional) units of start_offset. default is ’second’.

quiet prints to screen if quiet is set to false

Value

A sensor list with field data containing the data and with metadata fields pre-populated from
the sensor_names.csv file. Change these manually as needed (or specify the relevant inputs to
sens_struct) to the correct values.

Examples

HB <- harbor_seal
A <- sens_struct(data=HBAdata,sampling_rate=3,depid='md13_134a', type='acc', quiet=TRUE)

smooth Low pass filter a time series

Description

This function is used to low pass filter (smooth) a regularly-sampled time series.

Usage

smooth(x, n)

Arguments

x The signal to be filtered. It can be multi-channel with a signal in each column,
e.g., an acceleration matrix. The number of samples (i.e., the number of rows in
x) must be larger than the filter length, n.

n The smoothing parameter - use a larger number to smooth more. n must be
greater than 1. Signal components above 1/n of the Nyquist frequency are fil-
tered out.

78 sound_speed

Value

The input signal has the first and fifth harmonic. Applying the low-pass filter removes most of the
fifth harmonic so the output appears as a sinewave except for the first few samples which are affected
by the filter startup transient. Smooth uses fir_nodelay to perform the filtering and so introduces no
delay.

Examples

y1 <- sin((2 * pi * 0.05) %*% t(c(1:100))) + cos((2 * pi * 0.25) %*% t(c(1:100)))
x1 = c(1:length(y1))
plot(x = x1, y = y1)
y2 <- smooth(x1, n = 4)
x2 = c(1:length(y2))
plot(x = x2, y = y2)

sound_speed Sound speed estimation

Description

This function is used to estimate the sound speed using Coppens equation

Usage

sound_speed(temperature, D = NULL, S = NULL)

Arguments

temperature The temperature in degrees C

D (optional) The depth in meters (defaults to 1 m)

S The salinity in part-per-thousand (defaults to 35 ppt)

Value

The sound speed in m/s

Note

Range of validity: temperature 0 to 35 °C, salinity 0 to 45 parts per thousand, depth 0 to 4000 m

Source: http://resource.npl.co.uk/acoustics/techguides/soundseawater/content.html#UNESCO

Examples

sound_speed(8, 1000, 34)

spectrum_level 79

spectrum_level Compute the spectrum level of a signal x.

Description

This function is used to compute the spectrum level of a signal x.

Usage

spectrum_level(x, nfft, sampling_rate, w, nov)

Arguments

x A vector containing the signal to be processed. For signals with multiple chan-
nels, each channel should be in a column of x.

nfft The length of the fft to use. Choose a power of two for fastest operation. Default
value is 512.

sampling_rate The sampling rate of x in Hz. Default value is 1. sampling_rate is the vector of
frequencies at which SL is calculated.

w The window length. The default value is nfft. If w<nfft, each segment of w
samples is zero-padded to nfft.

nov The number of samples to overlap each segment. The default value is half of the
window length.

Value

A list with 2 elements:

• SL: The spectrum level at each frequency in dB RMS re root-Hz. The spectrum is single-
sided and extends to sampling_rate/2. The reference level is 1.0 (i.e., white noise with unit
variance will have a spectrum level of 3-10*log10(sampling_rate). The 3dB is because both
the negative and positive spectra are added together so that the total power in the signal is the
same as the total power in the spectrum.

• freq: The vector of frequencies at which SL is calculated.

Note

The spectrum is single-sided and extends to sampling_rate/2. The reference level is 1.0 (i.e., white
noise with unit variance will have a spectrum level of 3-10*log10(sampling_rate). The 3dB is
because both the negative and positive spectra are added together so that the total power in the
signal is the same as the total power in the spectrum.

Examples

BW <- beaked_whale
list <- spectrum_level(x = BWPdata, nfft = 4, sampling_rate = BWPsampling_rate)

80 speed_from_depth

speed_from_depth Estimate the forward speed of a diving animal

Description

This function is used to estimate the forward speed of a diving animal by first computing the depth-
rate (i.e., the first differential of the depth) and then correcting for the pitch angle.

Usage

speed_from_depth(
p,
A = NULL,
fs_p = NULL,
fs_A = NULL,
fc = 0.2,
plim = 20/180 * pi

)

Arguments

p The depth vector (a regularly sampled time series) in meters. sampled at sam-
pling_rate Hz. This can either be an animaltags sensor list, or a vector.

A (optional) A matrix or animaltags sensor data list containing acceleration data.
If A is not provided then only vertical velocity is returned (same output as
depth_rate()). Acceleration can be in any consistent unit, e.g., g or m/s^2. Ac-
celeration data must have the same number of rows as p.

fs_p (optional) The sampling rate of p in Hz (samples per second). Required only if
p is vector rather than sensor data list.

fs_A (optional) The sampling rate of A in Hz (samples per second). Required only if
A is vector rather than sensor data list.

fc (optional) Specifies the cut-off frequency of a low-pass filter to apply to p after
computing depth-rate and to A before computing pitch. The filter cut-off fre-
quency is in Hz. The filter length is 4*sampling_rate/fc. Filtering adds no group
delay. If fc is empty or not given, the default value of 0.2 Hz (i.e., a 5 second
time constant) is used.

plim (optional) Minimum pitch angle, in radians, at which speed can be computed.
Default: 0.3490659 radians = 20 degrees. Errors in speed estimation using this
method increase strongly at low pitch angles. To avoid estimates with poor
accuracy being used in later analyses, speed estimates at low pitch angles are
replaced by NaN (not-a-number). The default threshold for this is 20 degrees.

Value

Either forward speed or vertical speed:

spherical_cal 81

• s: If both p and A are input, the forward speed estimate in m/s is returned

• v: If only p is input, the depth-rate (or vertical velocity) in m/s is returned

Note

Output sampling rate is the same as the input sampling rate. If A and p are input and A has a higher
sampling rate, then p and the output are interpolated to match A using interp2length .

Frame: This function assumes a [north,east,up] navigation frame and a [forward,right,up] local
frame. In these frames, a positive pitch angle is an anti-clockwise rotation around the y-axis. A
descending animal will have a negative pitch angle.

Forward velocity for animals could be negative if its vertical velocity is negative and pitch angle
is positive, or, its vertical velocity is positive and pitch angle is negative. One could avoid getting
negative forward velocity by taking the absolute value of the output.

Examples

s <- speed_from_depth(harbor_seal$P, harbor_seal$A)

spherical_cal Deduce the calibration constants

Description

This function is used to deduce the calibration constants for a triaxial field sensor, such as an ac-
celerometer or magnetometer, based on movement data. This can be used to do a ’bench’ calibration
of a sensor.

Usage

spherical_cal(X, n = NULL, method = NULL)

Arguments

X The segment of triaxial sensor data to calibrate. It must be a 3-column matrix.
X can come from any triaxial field sensor and can be in any unit and any frame.

n The target field magnitude e.g., 9.81 for accelerometer data using m/s^2 as the
unit.

method An optional string selecting the type of calibration. The default is to calibrate
for offset and scaling only. Other options are: ’gain’ adjust gain of axes 2 and 3
relative to 1, or ’cross’ adjust gain and remove cross-axis correlations

82 tag2animal

Details

The function reports the residual and the axial balance of the data. A low residual e.g., <5% indi-
cates that the data can be calibrated well and there is not much noise. The axial balance indicates
whether the movement in X is suitable for data-driven calibration. If the movement covers all di-
rections fairly equally, the axial balance will be high. A balance <20 % may lead to unreliable
calibration. For bench calibrations, a high axial balance is achieved by rotating the sensor through
the full 3-dimensions. Sampling rate and frame of Y are the same as the input data so Y has the
same size as X. The units of Y are the same as the units used for n. If n is not specified, the units of
Y are the same as for the input data. It is a good idea to low-pass filter and/or remove outliers from
the sensor data before using this function to reduce errors from specific acceleration and sensor
noise.

Value

A list with 2 elements:

• Y: The matrix of converted sensor values. These will have the same units as for input argu-
ment n. The size of Y is the same as the size of X and it has the same frame and sampling
rate.

• G: The calibration structure containing fields: G.poly is a matrix of polynomials. The first
column of G.poly is the three scale factors applied to the columns of X. The second column
is the offset added to each column of X after scaling. G.cross is a 3x3 matrix of cross-factors.
If there are no cross-terms, this is the identity matrix. Off-axis terms correct for cross-axis
sensitivity.

A message will also be printed to the screen presenting

Note

This function uses a Simplex search for optimal calibration parameters and so can be slow if the
data size is large. For this reason it is most suitable for bench calibrations rather than field data.
This function is only usable for field sensors. It will not work for gyroscope data.

Examples

p <- spherical_cal(harbor_sealAdata)

tag2animal Tag-frame to animal-frame conversion

Description

Convert tag frame measurements to animal frame using pre-determined tag orientation(s) on the
animal.

tag2animal 83

Usage

tag2animal(X, sampling_rate, OTAB, Ya = NULL)

Arguments

X Data from a triaxial sensor such as an accelerometer, magnetometer or a gyro-
scope. X can be a three column matrix or a sensor structure (not a data frame or
tbl). In either case, X is in the tag frame, i.e., expressed in the canonical axes of
the tag, not the animal. X can have any unit and any regular sampling rate (i.e.,
measurements are regularly sampled; equally spaced in time).

sampling_rate (optional) The sampling rate of the sensor data in Hz (samples per second).
This is only needed if X is not a sensor structure. If X is a sensor data list,
sampling_rate is obtained from its metadata (X$sampling_rate).

OTAB is a matrix defining the orientation of the tag on the animal as a function of time.
Each row of OTAB is: cue1, cue2, pitch, roll, heading. (See Details.)

Ya is an optional sensor structure in which the sensor data has already been con-
verted to the animal frame. The OTAB is extracted from this structure. This is
useful, for example, to replicate tag-to-animal conversions at different sampling
rates.

Details

This function uses the OTAB matrix to convert sensor data X from tag frame of reference to whale
frame of reference. Each row of OTAB is: cue1, cue2, pitch, roll, heading where cue1 is
the start time of a move in seconds with respect to the start of X. cue2 is the end time of the
move. If cue1 and cue2 are the same, the move is instantaneous, otherwise a gradual move will be
implemented in which the orientation of the tag is linearly interpolated between the previous and
the new orientation. The pitch, roll and heading angles describe the tag orientation on the animal at
the end of the move (angles are in radians). The first row of OTAB must have cue1 and cue2 equal
to 0 as this is the initial orientation of the tag on the animal. Subsequent rows (if any) of OTAB
describe

Value

Xa,the sensor data in the animal frame, i.e., rotated to correct for the tag orientation on the animal.
If X is a sensor structure, Xa will also be one. In this case the structure elements ’frame’ and ’name’
will be changed. The OTAB will also be added to the structure.

See Also

[prh_predictor1], [prh_predictor2]

Examples

Aw <- tag2animal(beaked_whale$A, OTAB = matrix(c(0,0,0.1, 0.04, -0.2), nrow = 1))

84 tortuosity

tortuosity Measure tortuosity index

Description

This function is used to measure the tortuosity of a regularly sampled horizontal track. Tortuosity
can be measured in a number of ways. This function compares the stretched-out track length (STL)
over an interval of time with the distance made good (DMG, i.e., the distance actually covered in
the interval). The index returned is (STL-DMG)/STL which is 0 for straightline movement and 1
for extreme circular movement.

Usage

tortuosity(track, sampling_rate, intvl)

Arguments

track Contains the animal positions in a local horizontal plane. The track parameter
has a row for each position and two columns: northing and easting. The posi-
tions can be in any consistent spatial unit, e.g., metres, km, nautical miles, and
are referenced to an arbitrary 0,0 location. track object cannot be in degrees
as the distance equivalent to a degree latitude is not the same as for a degree
longitude.

sampling_rate The sampling rate of the positions in Hertz (samples per second).

intvl The time interval in seconds over which tortuosity is calculated. This should be
chosen according to the scale of interest, e.g., the typical length of a foraging
bout.

Value

The tortuosity index which is between 0 and 1 as described above. t contains a value for each period
of intvl seconds.

Note

This tortuosity index is fairly insensitive to speed so if track is produced by dead-reckoning (e.g.,
using ptrack or htrack), the speed estimate is not important. Also the frame of track is not important
as long as the two axes (nominally called northing and easting) used to describe the positions are
perpendicular.

Examples

BW <- beaked_whale
track <- ptrack(

A = BWAdata, M = BWMdata, s = 3,
sampling_rate = BWAsampling_rate,
fc = NULL, return_pe = TRUE

track3D 85

)$track
tortuosity <- tortuosity(track, sampling_rate = BWAsampling_rate, intvl = 25)

track3D Reconstruct a track from pitch, heading and depth data, given a start-
ing position

Description

The track3D function will use data from a tag to reconstruct a track by fitting a state space model
using a Kalman filter. If no x,y observations are provided then this corresponds to a pseudo-track
obtained via dead reckoning and extreme care is required in interpreting the results.

Usage

track3D(
z,
phi,
psi,
sf,
r = 0.001,
q1p = 0.02,
q2p = 0.08,
q3p = 1.6e-05,
tagonx,
tagony,
enforce = TRUE,
x,
y

)

Arguments

z A vector with depth over time (in meters, an observation)
phi A vector with pitch over time (in Radians, assumed as a known covariate)
psi A vector with heading over time (in Radians, assumed as a known covariate)
sf A scalar defining the sampling rate (in Hz)
r Observation error
q1p speed state error
q2p depth state error
q3p x and y state error
tagonx Easting of starting position (in meters, so requires projected data)
tagony Northing of starting position (in meters, so requires projected data)
enforce If TRUE (the default), then speed and depth are kept strictly positive
x Direct observations of Easting (in meters, so requires projected data)
y Direct observations of Northing (in meters, so requires projected data)

86 track3D

Value

A list with 10 elements:

• p: the smoothed speeds

• fit.ks: the fitted speeds

• fit.kd: the fitted depths

• fit.xs: the fitted xs

• fit.ys: the fitted ys

• fit.rd: the smoothed depths

• fit.rx: the smoothed xs

• fit.ry: the smoothed ys

• fit.kp: the kalman a posteriori state covariance

• fit.ksmo: the kalman smoother variance

Note

Output sampling rate is the same as the input sampling rate.

Frame: This function assumes a [north,east,up] navigation frame and a [forward,right,up] local
frame. In these frames, a positive pitch angle is an anti-clockwise rotation around the y-axis. A
positive roll angle is a clockwise rotation around the x-axis. A descending animal will have a
negative pitch angle while an animal rolled with its right side up will have a positive roll angle.

This function output can be quite sensitive to the inputs used, namely those that define the relative
weight given to the existing data, in particular regarding (x,y)=(lat,long); increasing q3p, the (x,y)
state variance, will increase the weight given to independent observations of (x,y), say from GPS
readings

See Also

m2h,a2pr

Examples

p <- a2pr(A = beaked_whaleAdata)
h <- m2h(M = beaked_whaleMdata, A = beaked_whaleAdata)
track <- track3D(z = beaked_whalePdata, phi = p$p,
psi = h$h, sf = beaked_whale$A$sampling_rate,
r = 0.001, q1p = 0.02, q2p = 0.08, q3p = 1.6e-05,
tagonx = 1000, tagony = 1000, enforce = TRUE, x = NA, y = NA)
oldpar <- graphics::par(no.readonly = TRUE)
graphics::par(mfrow = c(2, 1), mar = c(4, 4, 0.5, 0.5))
plot(-beaked_whalePdata, pch = ".", ylab = "Depth (m)",
xlab = "Time")
plot(track$fit.rx, track$fit.ry, xlab = "X",
ylab = "Y", pch = ".")
points(track$fit.rx[c(1, length(track$fit.rx))],
track$fit.ry[c(1, length(track$fit.rx))], pch = 21, bg = 5:6)
legend("bottomright", cex = 0.7, legend = c("Start", "End"),

undo_cal 87

col = c(5, 6), pt.bg = c(5, 6), pch = c(21, 21))
graphics::par(oldpar)

undo_cal Undo calibrations steps

Description

This function is used to undo any calibration steps that have been applied to sensor data. This will
reverse any re-mapping, scaling and offset adjustments that have been applied to the data, reverting
the sensor data to the state it was when read in from the source (excluding any filtering or decimation
steps).

Usage

undo_cal(X, temperature)

Arguments

X A sensor list or set of sensor lists in the tag frame, i.e., with calibrations applied.

temperature A vector of temperature measurements with the same number of samples and
sampling rate as the data in the input sensor data structure X. The temperature
parameter indicates the temperature experienced by the sensor during data col-
lection (not necessarily the ambient temperature experienced by the animal), and
may affect calibration because many sensors’ output values change depending
on the temperature.

Value

A sensor list or set of sensor lists reverted to the sensor frame, i.e., without calibrations.

Examples

BW <- beaked_whale
no_cal <- undo_cal(BW)

88 zero_crossings

zero_crossings Find zero-crossings in a vector

Description

This function is used to find the zero-crossings in a vector using a hysteretic detector. This is useful,
e.g., to locate cyclic postural changes due to propulsion.

Usage

zero_crossings(x, TH, Tmax = NULL)

Arguments

x A vector of data. This can be from any sensor and with any sampling rate.

TH The magnitude threshold for detecting a zero-crossing. A zero-crossing is only
detected when values in x pass from -TH to +TH or vice versa.

Tmax (optional) The maximum duration in samples between threshold crossings. To
be accepted as a zero-crossing, the signal must pass from below -TH to above
TH, or vice versa, in no more than Tmax samples. This is useful to eliminate
slow transitions. If Tmax is not given, there is no limit on the number of samples
between threshold crossings.

Value

A list with elements

• K: A vector of cues (in samples) to zero-crossings in x.

• s: A vector containing the sign of each zero-crossing (1 = positive-going, -1 = negative-
going). s is the same size as K. If no zero-crossings are found, K and s will be empty

• KK: The zero crossings of the vertical velocity vector

Note

Frame: This function assumes a [north,east,up] navigation frame and a [forward,right,up] local
frame. Both A and M must be rotated if needed to match the animal’s cardinal axes otherwise the
track will not be meaningful.

CAUTION: dead-reckoned tracks are usually very inaccurate. They are useful to get an idea of
HOW animals move rather than WHERE they go. Few animals probably travel in exactly the
direction of their longitudinal axis and anyway measuring the precise orientation of the longitudinal
axis of a non-rigid animal is fraught with error. Moreover, if there is net flow in the medium,
the animal will be advected by the flow in addition to its autonomous movement. For swimming
animals this can lead to substantial errors. The forward speed is assumed to be with respect to the
medium so the track derived here is NOT the ’track-made-good’, i.e., the geographic movement
of the animal. It estimates the movement of the animal with respect to the medium. There are
numerous other sources of error so use at your own risk!

zero_crossings 89

Examples

R <- zero_crossings(sin(2 * pi * 0.033 * c(1:100)), 0.3)
s <- c(-1, 1, -1, 1, -1, 1)

Index

∗ datasets
beaked_whale, 8
harbor_seal, 37

a2pr, 4, 48, 86
absorption, 5
acc_wgs84, 6
add_nc, 6
apply_cal, 7
as.POSIXct, 60, 62
axis, 27

beaked_whale, 8
block_acf, 8
block_mean, 9
block_rms, 10
body_axes, 11
buffer, 12

check_AM, 13
circ.disp, 26
circ.mean, 26
cline, 14, 15
col_line3, 15
comp_filt, 16
crop, 17
crop_all, 18
crop_to, 18
csv2struct, 19

decdc, 20, 21, 22
decz, 21
depth2pressure, 22
depth_rate, 23
detect_peaks, 24
dive_stats, 25
draw_axis, 27
dsf, 28

euler2rotmat, 29
extract, 30

extract_cues, 30

find_dives, 26, 27, 31
fir1, 33
fir_nodelay, 32
fit_tracks, 33, 40, 67
fix_offset_3d, 34
fix_pressure, 35

get_researcher, 36
get_species, 36

harbor_seal, 37
hilbert_env, 37
hilbert_transform, 38
htrack, 39, 43, 67

image_irreg, 40
inclination, 41
interp2length, 42, 81
interp_nan, 43
inv_axis, 43

julian_day, 44

lalo2llf, 45
layout, 62
load_nc, 7, 46

m2h, 4, 47, 86
m_dist, 54
make_info, 48
make_specgram, 49
mean_absorption, 50
median_filter, 51
merge_fields, 52
metadata_editor, 52
msa, 53, 56

njerk, 53, 55
norm2, 56

90

INDEX 91

ocdr, 39, 57
odba, 53, 56, 58

par, 63
plot, 63
plott, 27, 59
plott_base, 61, 61
plott_static_panel, 63
POSIXct, 60, 62
prh_predictor1, 64, 66
prh_predictor2, 65, 65
ptrack, 40, 66

read_cats, 68, 69
read_cats_csv, 69
rotate_data, 70, 73
rotate_vecs, 71
rotation_test, 70, 71
rotmat2euler, 73
rough_cal_3d, 74

save, 75
save_nc, 7, 75
sens_struct, 76
smooth, 77
sound_speed, 78
specgram, 49
spectrum_level, 79
speed_from_depth, 80
spherical_cal, 81

tag2animal, 65, 66, 82
tortuosity, 84
track3D, 40, 67, 85

undo_cal, 87

zero_crossings, 88
zm, 63

	a2pr
	absorption
	acc_wgs84
	add_nc
	apply_cal
	beaked_whale
	block_acf
	block_mean
	block_rms
	body_axes
	buffer
	check_AM
	cline
	col_line3
	comp_filt
	crop
	crop_all
	crop_to
	csv2struct
	decdc
	decz
	depth2pressure
	depth_rate
	detect_peaks
	dive_stats
	draw_axis
	dsf
	euler2rotmat
	extract
	extract_cues
	find_dives
	fir_nodelay
	fit_tracks
	fix_offset_3d
	fix_pressure
	get_researcher
	get_species
	harbor_seal
	hilbert_env
	hilbert_transform
	htrack
	image_irreg
	inclination
	interp2length
	interp_nan
	inv_axis
	julian_day
	lalo2llf
	load_nc
	m2h
	make_info
	make_specgram
	mean_absorption
	median_filter
	merge_fields
	metadata_editor
	msa
	m_dist
	njerk
	norm2
	ocdr
	odba
	plott
	plott_base
	plott_static_panel
	prh_predictor1
	prh_predictor2
	ptrack
	read_cats
	read_cats_csv
	rotate_data
	rotate_vecs
	rotation_test
	rotmat2euler
	rough_cal_3d
	save_nc
	sens_struct
	smooth
	sound_speed
	spectrum_level
	speed_from_depth
	spherical_cal
	tag2animal
	tortuosity
	track3D
	undo_cal
	zero_crossings
	Index

